
Chapter 15

Deeper Exploration of Logs and
Exponentials1

Not all of the models that we can use to describe real world data are based on power func-
tions or polynomials. In fact, we saw in earlier chapters that there are many situations where
exponential or logarithmic models may be needed. We also developed a way of interpreting
the coefficients of these models using parameter analysis. However, parameter analysis does
not give us the power needed to locate maxima and minima for such models. Only calcu-
lus tools, specifically the derivative, can do this. In this chapter, you will work with the
derivatives of exponential and logarithmic functions, and you will further apply these tools
to analyze models of the business world. When you have finished this chapter, you will know
how to deal with many of the basic functions found in the real world. The symbolic analysis
portion of this chapter will show you how, using multiplication, division and composition of
models, we can build many more types of models and analyze them using calculus.

• As a result of this chapter, students will learn
√

How to use the calculus tool of derivatives to analyze models involving logarithms√
How to use derivatives to analyze models involving exponentials√
How compound interest works, including continuously compounded interest

• As a result of this chapter, students will be able to
√

Take derivatives of exponential functions√
Take derivatives of logarithmic functions√
Compute compound interest

1 c©2011 Kris H. Green and W. Allen Emerson

443
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15.1 Logarithms and their derivatives

As we have seen, there are many times when the model you develop will need to go beyond
the power or polynomial models. For a multitude of reasons, the exponential and logarithmic
models are the next most common models:

1. Exponentials are easy to interpret based on percent changes; thus, they can easily
represent mathematically the process of accruing interest for loans or other accounting-
related phenomena.

2. Logarithms are useful for dealing with some of the potential problems in modeling
data, specifically the problem of non-constant variance.

3. Logarithms can be useful for simplifying many other models for analysis, since loga-
rithms (remember the properties listed in section 12.2.1) can be used to convert many
expressions involving multiplication and division into addition and subtraction prob-
lems.

These reasons alone are sufficient to justify learning how to properly use derivatives to
analyze such functions. Before we get to technical, though, it’s worth looking at the functions
themselves and trying to figure out what we expect to happen. If we look at a graph of an
exponential function, we notice immediately that the slope is always increasing. The slope
is always positive, and the curve is always concave up. Thus, we expect the derivative to (a)
always be positive and (b) increase as x increases. While these observations seem to tell us a
lot, we have to remember that we are only looking at a small portion of the complete graph
of the function, so it is possible that somewhere far from where we are looking this behavior
will change. Once we have the derivative in hand, however, we can find out if this happens.
(You’ll have a chance to work with this in one of the problems at the end of the chapter.)

This is all in stark contrast to logarithmic functions. The graph of a logarithmic function
shows more complex behavior. While it is true that the graphs seems to be always increasing,
notice that the slope is decreasing as we move to the right. Thus, the logarithmic function
seems to be concave down everywhere, even though it is increasing. Is it possible that
somewhere far down the line the graph actually starts to decrease? We must also bear in
mind that whatever we learn about one of the functions can be applied to the other, since
logarithms and exponentials are inverses of each other.

The following section is devoted to learning about the derivatives of logarithmic functions.
The development of this will mimic the path we took in chapter 14 to develop the derivative
formulas for the power and polynomial models. Along the way we will encounter some other
rules for taking derivatives: the chain rule, product rule and quotient rule. These will give us
the ability to differentiate (take the derivative of) functions that are made of combinations
of basic functions like logarithms and power functions. The next section will explore the
exponential function and its applications to one of the most frequently used economics and
business scenarios: compound interest.
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15.1.1 Definitions and Formulas

Composition of Functions This is one way of making a new function from two old func-
tions. Essentially, we take one function and ”plug it into” the other function. For
example, if we compose f(x) = 2x3 and g(x) = 4x−5 we get either h(x) = (f ◦g)(x) =
f(g(x)) = 2(4x− 5)3 or we get k(x) = (g ◦ f)(x) = 4(2x3)− 5 depending on the order
of the composition. In general, the two orders are not the same.

Chain rule We’ll be using this rule a lot. The symbolic analysis section will explain it in
more detail, but the basic idea is that if you have a function composed with another
function and you need the derivative of the combined object, you use the chain rule
to ”chain together” derivatives of each function. For example, if we start with the
functions f(x) and g(x) above and compose them into h(x) the new function h is no
longer a simple power function or polynomial (although we could multiply it out into
a polynomial.) But since it is composed of these simpler functions, we can still take
it’s derivative. In fact, the chain rule says that

d

dx
f(g(x)) =

df

dg
· dg
dx
.

Thus h′(x) = [df/dg][dg/dx] = [2 · 3g(x)2] · [4] = 24(4x − 5)2. A derivation and proof
of the chain rule are somewhat technical; for now, think of this as a way of chaining
together the derivatives so the objects which look like (but aren’t really) fractions will
cancel out. In the above illustration of the chain rule, the first ”fraction” has the
numerator we want (df) and the second ”fraction” has the denominator we want (dx).
Each of these ”fractions” has a dg term that ”cancels out” to give the derivative we
want: df/dx.

Product rule The product rule allows us to take derivatives of functions that are products
of simpler functions. It says that

d

dx
[f(x) · g(x)] = g(x) · df

dx
+ f(x) · dg

dx
.

The proof of this rule will be given in the symbolic analysis section, and will make use
of the derivative of a logarithm and the chain rule.

Quotient rule The product rule allows us to take derivatives of functions that are products
of simpler functions. It says that

d

dx

[
f(x)

g(x)

]
=
g(x)f ′(x)− f(x)g′(x)

[g(x)]2

The proof of this rule will be given in the symbolic analysis section, and will make use
of the derivative of a logarithm and the chain rule.
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15.1.2 Worked Examples

Example 15.1. Derivative formula for logarithmic models
In example 1 (page 318) we developed a model for the cost of electricity as a function of the
number of units of electricity produced. Marginal analysis can help us to make more specific
sense of this model by helping us to interpret how much each unit of electricity affects the
total cost of producing the electricity. The model had the form f(x) = A+B ∗ ln(x):

Cost = -63,993.30 + 16,653.55 · Log(Units)

Suppose that we are currently producing 500 units of electricity. How much would it
cost to produce one more unit of electricity? We can put this into an Excel spreadsheet to
compute it fairly easily. The results are shown below, and were obtained by setting up a
formula for the difference quotient of the function, with a variable for h so that we can let h
get very small. This lets us see what the instantaneous rate of change of the cost function
is (this data is reproduced in the first worksheet of C15 LogDerivative.xls).

A -63,993.30
B 16,653.55

X 500

H X+H F(X) F(X+H) DF = F(X+H)-F(X) DF/H
10 510 39501.99 39831.77 329.7840438 32.9784
1 501 39501.99 39535.26 33.27383724 33.27384

0.1 500.1 39501.99 39505.32 3.330376973 33.30377
0.01 500.01 39501.99 39502.32 0.333067669 33.30677

0.001 500.001 39501.99 39502.02 0.033307067 33.30707

From this, it seems that when current production is at 500 units, each additional unit of
electricity will cost approximately $33.31. In contrast, if are currently producing 1,000 units
of electricity, the marginal cost is about $16.65/unit.

A -63,993.30
B 16,653.55

X 1000

H X+H F(X) F(X+H) DF = F(X+H)-F(X) DF/H
10 1010 51045.35 51211.06 165.7083324 16.57083
1 1001 51045.35 51061.99 16.64522877 16.64523

0.1 1000.1 51045.35 51047.01 1.665271738 16.65272
0.01 1000.01 51045.35 51045.51 0.166534667 16.65347

0.001 1000.001 51045.35 51045.36 0.016653542 16.65354
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Now, what can this tell us about the derivative formula of a logarithmic function? Quite
a lot, actually. Notice that as the production level increased (from 500 to 1000 units) the
derivative (approximated by the column labeled ”DF/H”) decreased. Thus, we expect the
derivative of a logarithmic function to be a decreasing function. This makes perfect sense
when looking at the graph of a logarithmic function, since the graph ”flattens out” the
farther you move along the x-axis. We can repeat the same method of analysis from chapter
?? to build a table of values for [ln(x)]′. If we plot these values, we get a graph much like
the one below (see the second worksheet of ”Ch15 LogDerivative.xls”).

Figure 15.1: Difference quotient of a basic logarithmic function.

Notice that the difference quotient appears to be very similar to the inverse function,
f(x) = x−1. This is a power function, so we can superimpose a trend line on this data using
a power function. If we do, we find remarkable agreement, even with h = 0.1. Reducing h
will, however, quickly achieve a nearly perfect fit for the inverse function to the difference
quotient. While we have not truly proven this, we can assert with some confidence that

d

dx
ln(x) =

1

x
.

Now, we can use this along with what we already know about derivatives to determine
the derivative of a more complete logarithmic model:

d

dx
(A+B ln(x)) =

d

dx
(A) +

d

dx
(B ln(x)) = 0 +B

d

dx
ln(x) =

B

x
.

Thus, we expect that the derivative of the logarithmic function above (withA = −63, 993.30
and B = 16, 653.55) to be equal to B/x = 16, 653.55/x. So when the production level is 500,
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the derivative should be 16,653.55/500 = 33.3071, which is extremely close to the number
we estimated using the difference quotient above. If the production level is 1000, we expect
the derivative to be 16,653.55/1000 = 16.65355, which is again very close to the estimates
determined earlier.

Example 15.2. Derivative of a logarithmic function
Find the derivative of the function f(x) = 3− 2 ln(5x) with respect to the variable SxS.

f ′(x) = d
dx

(3− 2 ln(x))
= d

dx
(2) + d

dx
(−2 ln(x)) Using the sum rule for derivatives

= 0− 2 d
dx

ln(5x) Derivative of a constant is zero AND deriva-
tive of a constant times a function

= −2 · 1
5x
· d
dx

(5x) Using the chain rule
= −2 · 1

5x
· 5 Computing the derivative of the linear func-

tion
= − 2

x
Simplifying the derivative

Example 15.3. A more complex derivative
Now for the hardest example yet. Find the derivative of the compound function below:

h(x) =
(3 + 2x+ x2)(5 + x)4

2 + 3x+ 7x2
.

There are several different paths we could take through this problem. We’ll do it here by
using the logarithmic derivative (one could use the chain, product and quotient rules all at
once also). To do this, we take the natural logarithm of both sides and simplify the resulting
mess that appears on the right hand side.

ln(h(x)) = ln

[
(3 + 2x+ x2)(5 + x)4

2 + 3x+ 7x2

]
= ln(3 + 2x+ x2) + ln(5 + x)4 − ln(2 + 3x+ 7x2)

= ln(3 + 2x+ x2) + 4 ln(5 + x)− ln(2 + 3x+ 7x2)

Taking the derivative is now a matter of using the chain rule, piece by piece. For example,
we know that the derivative of the left hand side with respect to the variable x is just
h′(x)/h(x), where h′(x) is the derivative we really want. Now we need to take the derivative
of the right hand side; we’ll do it in three parts, one for each term on the right hand side.

d

dx
ln(3 + 2x+ x2) =

1

3 + 2x+ x2
· d
dx

(3 + 2x+ x2) =
2 + 2x

3 + 2x+ x2

d

dx
[4 ln(5 + x)] = 4 · d

dx
ln(5 + x) = 4 · 1

5 + x
· d
dx

(5 + x) =
4

5 + x
d

dx
ln(2 + 3x+ 7x2) =

1

2 + 3x+ 7x2
· d
dx

(2 + 3x+ 7x2) =
3 + 14x

2 + 3x+ 7x2
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Now we can put this all together to get

1

h(x)

dh

dx
=

2 + 2x

3 + 2x+ x2
+

4

5 + x
− 3 + 14x

2 + 3x+ 7x2

Cross multiplying by h(x) then gives us the derivative of h with respect to x

dh

dx
=
[

2 + 2x

3 + 2x+ x2
+

4

5 + x
− 3 + 14x

2 + 3x+ 7x2

]
· (3 + 2x+ x2)(5 + x)4

2 + 3x+ 7x2

After a great deal of work, this can simplify to

dh

dx
=

(2 + 2x)(5 + x)4

2 + 3x+ 7x2
+

4(3 + 2x+ x2)(5 + x)3

2 + 3x+ 7x2
+

(3 + 14x)(3 + 2x+ x2)(5 + x)4

(2 + 3x+ 7x2)2

If we get a common denominator, we can further simplify this, but it doesn’t really help.
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15.1.3 Exploration 15A: Logs and distributions of data

Part 1. Open the data file ”C15 WaitTimes.xls”. This first worksheet (labeled ”part 1”)
contains a list of 400 service times at Beef ’n Buns. Generate a histogram of the data to
match the histogram below. Notice that the distribution of service times is significantly
right-skewed.

Figure 15.2: Histogram of wait times at Beef n’ Buns, showing the right-skewed distribution.

One of the assumptions about linear regression involves the distribution of the data.
If were to try and create a regression model to predict service times, we would find this
model to have significant error, due the data’s skewness. There is, however, an easy way to
normalize the data in order to produce a better model. Use StatPro to create a column of
wait times that has been transformed by taking the natural logarithm. Create a histogram
of these logged wait times. What do you see? Under what circumstances might this be a
useful tool for model building?

Part 2. The second worksheet in the file illustrates another property of logarithms. In
fact, it is this property that makes the process in part 1 work. This sheet shows a graph of the
natural logarithm, along with vertical and horizontal lines passing through the data points.
From looking at the graph, which has points that are equally spaced in the x direction, can
you explain why logarithmic functions are sometimes described as ”compressing data”? Your
task is to first change the x coordinates of the points (in column B) so that the change in y
between successive points is the same - exactly the same. Then, use the other information
in the data table and what you know about the property of logarithms to explain why this
particular spacing of x values solves the problem. What other x values would work?
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Figure 15.3: Graph of the natural logarithmic function, showing their basic properties.

15.1.4 How To Guide

Logarithmic and Log-Log plots

When you have data that spans many order of magnitude (like 1, 10, 100, 1000, 10000...)
taking the logarithm of the data reduces it to a much more manageable set of numbers.
For example, if we take the base-10 logarithm of each number in the preceding list, we get
the numbers (0, 1, 2, 3, 4, 5...) which are must easier to use. This is the essence of many
commonly used scales of measurement (the Richter scale for measuring earthquake energy
and the unit of measuring sound, the decibel, are both logarithmic). This is also useful in
dealing with models in which the variability in the residuals increases.

An alternate approach to actually computing the logarithm of each data point is to
simply graph the data on a logarithmic scale. This is easy to do in Excel. For example, if
you enter the pairs of (x, y) data points shown below and generate a standard XY (scatter)
plot of the data, the graph is obviously curved, indicating a nonlinear relationship between
the variables.

x y
1 2
2 7
3 20
4 54
5 148
6 400
7 1100
8 2900
9 8100
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Figure 15.4: XY data showing a nonlinear relationship.

Click on the graph, then select the layout ribbon from the toolbar. Click on ”axes”
(not ”axis titles”) and select primary vertical axis. From the pull down list, choose ”show
axis with log scale”. The graph will still display exactly the same data, but will appear to
represent an almost linear relationship. This is shown on in figure 15.6. Notice that the
vertical axis now looks very different. In the original graph, the evenly spaced gridlines
represented an increase in the y variable of 1,000, regardless of whether you were at the
top of the axis or the bottom. The spacing on the logarithmic scale, though, increases by a
factor of 10 for each gridline (from 1 to 10, 10 to 100, 100 to 1000, etc.)

You can change the scale on the horizontal axis as well, letting you create log-linear,
linear-log and log-log type graphs.
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Figure 15.5: Converting the vertical axis of a graph to a logarithmic scale.

Figure 15.6: XY data showing a nonlinear relationship on a log(Y ) scale.



454 CHAPTER 15. LOGARITHMIC AND EXPONENTIAL MODELS

15.2 Compound interest and derivatives of exponen-

tials

Compound interest is one of the foundations of modern finance. The basic idea is that your
investment will earn interest on the amount invested (the principal) as well as the interest
itself. There are two primary versions of compound interest that we will explore in this
section. The first is the easiest to make sense of, the case where there are a fixed number of
times each year when the interest is computed and then added to the account. The other
version is harder to understand intuitively because it involves interest being computed an
infinite number of times. While it may seem that this would give you an infinite amount
of money, since the interest rate for each period is infinitesimally small (it is the annual
percentage rate divided by the number of compounding periods, so it is extremely small) the
total amount reaches a fixed limit related to the number e.

Once we understand the basics of compound interest it can be applied to many other
economic and financial concepts, such as present value and future value of an investment.
The present value of an investment is the amount you would need to invest today in order
to achieve a fixed level at the end of the investment period. This situation is most easily
understood through the modern day phenomenon of the lottery. Most lotteries offer the
winner two choices of payment: a lump sum now or small payments made over a longer
period of time, say 20 years. If the winner ”won” $1 million, she would, for example, have
to choose between monthly payments of $50,000 each year for twenty years (a total of $1
million) or a lump sum payment of $548,811.64 right now. Ignoring all taxes, of course, which
substantially change the problem under consideration, the reason the lump sum payment is
so much less than the actual winnings is that you are getting it now. If you were to invest
it at 3% for 20 years, you would have about $1 million at the end, the same amount as the
lottery winnings. Since the lottery company would have access to the money in the 20-year
payment version, they would be earning interest on the $1 million over that entire 20 years.
But if they have to pay you all right now, they lose that interest. Thus, the present value of
the $1 million lottery winning is about $550,000, assuming a 3% interest rate annually. We
will further explore the idea of present value in the problems for this section.

15.2.1 Definitions and Formulas

Principal The amount of money initially invested or borrowed; it is the basis for computing
the interest for the investment or loan.

Simple interest Simple interest is a way of computing the value of an investment based
on giving interest one time only: at the very end of the investment period.

Compound interest Compound interest involves breaking the lifetime of the loan or in-
vestment into many periods. During one period, simple interest is used to compute
the value of the loan or investment. During the next period, the interest for that is
based not on the original principal, but on the current value of the loan including all
interest from previous periods. Thus, with compound interest, you earn interest on
your interest.
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Continuously compounded interest This is a form of compound interest that uses, es-
sentially, an infinite number of infinitesimally short investment periods for computing
the interest. When this is done, we find that the exponential function with base e is a
natural way to express the investment value.

15.2.2 Worked Examples

Example 15.4. Compound interest formulas
Suppose we were to invest an amount of principal, P , in an account that earns an interest
rate r each year (this is the APR, or Annual Percentage Rate). This means that at the end
of the first year, you will earn rP additional money. Thus, after one year, your account, A,
has the value

A(1) = P + rP = P (1 + r).

If you were to leave the money in the account for a second year, you would earn interest
not only on the principal, but also on the interest you earned the first year:

A(2) = P (1 + r) + P (1 + r)r = P (1 + r)(1 + r) = P (1 + r)2.

What if you let the money earn interest for a third year? You would have a total of

A(3) = P (1 + r)2 + P (1 + r)2r = P (1 + r)2(1 + r) = P (1 + r)3.

With a little work, we can show that, in general, after n years at an APR of r your principal
P will earn a total of

A(n) = P (1 + r)n.

Now, suppose that our interest is not computed annually, but is computer every month,
based on the APR. This means that the actual monthly interest rate is r/12 and that in a
single year we have 12 compounding periods. Similar logic to the previous case will tell us
that after t years of compounding the interest monthly at this rate we will have

A(t) = P
(

1 +
r

12

)12t

dollars in the account. Similarly, if we let the money be compounded n times each year, we
will have an interest rate of r/n each period and a total of nt compounding periods after t
years. This gives us an amount of

A(t) = P
(

1 +
r

n

)nt

.

This is, obviously, an exponential function, but with a base of (1 + r/n) rather than the
natural base of e. However, they are related. Consider what happens if we invest $1 at 100%
APR for one year under different compounding periods, as shown in the table below.
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Schedule Number of Periods Total Amount
Annual 1 2
Monthly 12 2.61303529
Weekly 52 2.692596954
Daily 365 2.714567482
Hourly 8760 2.718126692
Each minute 525600 2.718279243
Each second 31536000 2.718281781
Every tenth of a second 315360000 2.71828187
Every hundredth of a second 3153600000 2.718281661

Notice that the amount of money does continue to grow, but not at the same rate. In fact,
it seems that the amount of money we are earning is approaching a fixed amount. Mathe-
matically, it is has been proven that this is the case and that the number this approaches is
the number e:

The number e is the amount of money earned in an account after investing $1
for one year at 100% interest, compounded continuously.

Mathematicians write this fact using the limit notation:

lim
n→∞

(
1 +

1

n

)n

= e.

We can now use this fact to generate a formula for continuously compounded interest.
First, we introduce a new variable m so that n = r·m. Then we have an equivalent expression
for the interest given by

lim
n→∞

(
1 +

r

n

)n

= lim
m→∞

(
1 +

1

m

)mrt

=
[

lim
m→∞

(
1 +

1

m

)m]rt
= ert.

Thus, our formula for the amount in an account with n compounding periods changes to
the following formula if we compound it continuously:

A(t) = Pert.

Example 15.5. Derivatives of exponential functions
Now that we know about the derivatives of logarithmic functions, we can easily use the idea
of a logarithmic derivative to determine the derivative of an exponential function. One of
the most common exponential functions to occur in the business world relates to the future
value of an investment. To get to this, though, we’ll need to develop the idea of compound
interest.

So, although it took us a little while to get there, and we skipped a few steps, we see
that the exponential function is closely tied to the idea of compound interest. We can now
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ask the following. Suppose you have invested a fixed amount of money P at a fixed rate of
interest r. How quickly (in time) is your money growing in value?

The question ”how quickly” immediately reminds us of the idea of rates of change, so we
know we are really talking about the derivative of the amount of money in the account. So,
what is the derivative of the amount? We’ll use our knowledge of logarithmic derivatives to
help. We really want to know the derivative of A(t), but we don’t know the derivative of an
exponential. However, the exponential function and the logarithmic function are inverses of
each other, so the formula for the amount can be rewritten as

ln(A(t)) = ln
(
Pert

)
= ln(P ) + ln

(
ert
)

= ln(P ) + rt ln(e) = ln(P ) + rt

where we have used the rules for manipulating logarithms and the fact that ln(e) = 1.
Now, we can take the derivative of each side of this equation, using the chain rule:

d

dt
(left hand side) =

d

dt
ln(A(t)) =

1

A(t)

dA

dt
.

Now, the derivative of the right hand side is easy, since it’s really a linear function (note
that ln(P ) is a constant; it doesn’t depend on the variable t with respect to which we are
taking the derivative):

d

dt
(right hand side) =

d

dt
(ln(P ) + rt) =

d

dt
ln(P ) +

d

dt
(rt) = 0 + r = r.

We can now put all this together, since we have done the same thing to both sides of the
equation (namely, take the derivative with respect to t), so they are still equal to each other.

1

A(t)

dA

dt
= r ⇒ dA

dt
= rA(t) = rPert.

So, the true rate of increase of your account value is an amount of r ∗ exp(rt) dollars per
year. If you let it sit for t = 10 years at a rate of 2.5% your money will be increasing at a
rate of A′(10) = 0.025 · P · exp(0.025 ∗ 10) = 0.025 · P · exp(0.25) = 0.032P dollars per year.
If you had invested $1000 initially, this would come to a growth rate of about $32/year.

Example 15.6. Derivative of an exponential function
Find the relative rate of change of the function g(r, t, P ) = Pert with respect to the variable
r. The relative rate of change is just the rate of change divided by the function itself, so we
have the relative rate of change as (1/g)· (derivative of g with respect to r).

1
g
∂g
∂r

= 1
g

∂
∂r

(Pert) Definition of relative rate of change, using
partial derivative notation since there are
several variables in the function

= 1
g
· P · ∂

∂r
(rt) Derivative of a constant times a function

= 1
g
· P · ert · r Derivative of an exponential AND chain rule

= 1
g
· r · g Derivative of a linear function

= r Simplification



458 CHAPTER 15. LOGARITHMIC AND EXPONENTIAL MODELS

This means that the relative rate of change of the formula for continuously compounded
interest is just equal to the interest rate itself. To understand what this means, think about
the units of the rate of change with respect to r: units of dollars divided by units of interest.
When we divide this by the amount (dollars) we get the relative rate of change, which is
measured in 1/(interest rate). This is a relative amount, so it is like a percentage. Thus,
each actual 1% increase in the interest rate (from 1% to 2% or from 5.25% to 6.25%) will
increase the value of our account for a fixed amount of principal invested for a fixed period
of time by r %.

Example 15.7. Application of Marginal Analysis to Business Decisions
The analysis team at Koduck has determined the following information about your current
production level:

Marginal cost (MC) = $2.25/unit
Marginal Revenue (MR) = -$1.15/unit

What does this mean for Koduck?
For starters, we note that a negative value for marginal revenue means that if you increase

production by 1 unit, your overall revenue (price * number sold) will actually drop. (This
could be because you have already flooded the market; after all, how many pictures of water
fowl can you sell in a given city?) The fact that the marginal cost is positive means that it
will cost you more to make one more unit of product. Thus, it seems that increasing current
production levels would not be wise: The total cost would rise and the revenue would drop,
leading to lower profits. No one wants that. In fact, we should probably decrease production
in order to increase profits! If we decrease production by 5 units, say, then we can expect
the revenue to increase:

Change in Revenue = MR*change in production = (-$1.15/unit)*(-5 units) = $5.75.

At the same time, this would result in a decrease in cost:

Change in Cost = MC*change in production = ($2.25/unit)*(-5 units) = -$11.25.

This results in a total change in the profit of $17! It is a fact (which we will explore later)
that the maximum possible profit (= revenue - cost) must happen when the marginal cost
and the marginal revenue are equal. Since we can increase profits by lowering production,
we must be producing more units than necessary to achieve the maximum profit.
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15.2.3 Exploration 15B: Loan Amortization

In practice, the types of interest discussed in this chapter (simple, compound, and continu-
ously compounded) are only parts of larger schemes for determining interest. One common
application of simple interest is in loan amortization. The idea is that you take out a loan
for a specified amount of principal, at a particular APR, for a set period of time. This
time period is broken into smaller time periods (for example, a fifteen year loan for a house
might be broken into monthly payment periods) and during each period you pay back some
principal and some interest. However, while the total amount of each payment is generally
held constant, the amount of that payment devoted to interest and principal repayment are
not. In this exploration, you will construct a spreadsheet to explore the way a loan is repaid.

Suppose we take out a $130,000 loan for a property. If the loan is at 6% interest (APR)
and we pay it back monthly over a fifteen year period (180 payments) how much will we
need to pay per month? Start by entering the basic information on the loan, as shown below
in cells A1:B4. In cell B4, put your guess for the amount you would expect to pay. Try to
be reasonable, keeping in mind that none of the interest schemes above will actually give
you the amount, since the amount of interest to be paid at any one time is determined by
the remaining principal on the loan. In cell E1, enter a formula to calculate the monthly
interest rate (it is the APR divided by the Number of Periods in a year). Now, set up the
loan amortization table headers as shown. Under ”Period” enter the numbers 1, 2, 3, etc.
up to 180 at 12 monthly periods per year, this will carry our loan through 15 years.

Figure 15.7: Setup for computing a loan amortization

Now, the interest for a particular period is easy to compute: it’s just simple interest
on the remaining principal balance. So, for the first period, all we need to do is multiply
the periodic interest rate by the original loan amount. Once we have this, the amount of
principal in the first payment is the total monthly payment minus the interest that period.
The cumulative interest is just a place to track the running total on the interest we have
paid and the cumulative principal tracks the total we have paid on the original loan amount;
the remaining principal is the original loan minus the cumulative principal. Your formulas
for the first period will probably be slightly different than the formulas for the other periods,
but once you have the formulas entered, you can copy them down the table. Since the goal is
to pay off the loan in 15 years (180 monthly payments) try changing the ”Est Pay” amount
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until you find a monthly payment that leads to a balance of zero remaining principal in
period 180 (cell F190).

Once you have played with this a little, you can use ”Goal Seek” to compute the actual
monthly payment required to pay the loan off by a certain period of time. Try constructing
a table listing different monthly payments based on changing one of the loan parameters
(like the interest rate). Pay particular attention to the cumulative interest paid on the loan.

N.B.: There is a way to compute, just from the loan information, the monthly payment
required. This formula, however, requires a lot of computational work, and we can get the
same information by playing with it in Excel. Details of the formula will be discussed in the
Symbolic Manipulation supplement for those interested. There are also automatic formulas
in Excel for computing loan amortizations. If you are interested, look up the functions PMT,
IPMT and PPMT.
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15.2.4 How To Guide

The PMT Function

Excel can easily help you compute monthly payments on loans using the PMT function.
This function requires at least three arguments, and has two optional arguments that can
be used in different situations. The format of the function is shown below.

=PMT(Rate, NPer, PV, [FV], [Type])

Rate is the interest rate per period that the interest is compounded. If you are working
with most loans, this will be the APR divided by 12, since the interest is compounded
monthly. NPer represents the number of periods over which the loan is being computed. PV
is the present value of the loan; in most cases, this is the principal, the amount that you
have borrowed. The two optional arguments are FV and Type. FV is the future value of
the loan; use this if you do not want the amount to be 0 at the end of the loan period. If
you leave this argument out, Excel assumes that you want it to be 0. Type is either 0 or 1;
0 means that the payments are due at the end of each loan period; 1 means that payments
are due at the beginning of each loan period (default is 0).

Thus, if you have a $10,000 loan, at 6% APR for 2 years, we can compute the monthly
payments with the formula below (assuming payments are due at the end of each period).
Notice that the number of periods is multiplied by 12 to make sure that we are computing
everything in months (2 years * 12 months/year = 24 months for the number of payments).

=PMT(6%/12, 2*12, 10000) (should be $443.21)

Notice that in two years you will pay a total of $443.21*2*12 = $10,636.95 to the loan,
which is the original loan of $10,000 plus about $636 in interest. This function can also help
you plan savings or retirement accounts using the FV argument. Suppose you want to know
how much to save each month, starting with nothing, if you get 5% APR and want to have
$250,000 in 10 years. The formula below computes the monthly payments you should make
to the account (payments at beginning of each period).

=PMT(5%/12, 10*12, 0, 250000, 1) (should be $1,603.29)

Notice that if we multiply the PMT amount by the number of periods (10*12 = 120) we
get $192,394.90, indicating that over the ten years, we will pay about $192 thousand, but
the interest will give us a balance of $250 thousand. Thus, we earn about $58 thousand over
the savings period.

FINAL NOTE: PMT returns the answer in accounting format. This means that it is
almost always a negative number displayed in red and in parentheses. This makes it easier
to use in computations for loan amortization schedules, since you normally want to subtract
the loan payment each period.



462 CHAPTER 15. LOGARITHMIC AND EXPONENTIAL MODELS

15.3 Homework

15.3.1 Mechanics and Techniques Problems

15.1. For each of the following functions, compute the first derivative of the function with
respect to the independent variable.

1. f(x) = 3 ln(x) + 5

2. h(t) = −2e3t

3. g(s) = 5s+ 3s ln(s2 − 4)

4. p(y) = 5ye−y
2

5. The logistic function f(x) = A
1+e−Bx , where A and B are constants.

15.2. Find the local maxima and minima of the function given in 1d) above. Use this
information to help sketch a picture of what the function looks like when plotted as p(y)
versus y.

15.3. The present value of an investment is the amount of money you would need to invest
at a particular interest rate r for a specified period of time t in order for the investment to
rise to a total value of V .

1. Assuming that there are n compounding periods per year, determine a formula for the
present value of an investment.

2. Assuming that the interest is compounded continuously, determine a formula for the
present value of an investment.

3. Using your formulas in a) and b) fill in the table showing the present value of a
10-year investment that has a value of $1 million. Your table should compute this
for the following range of interest rates: 1%, 2.5%, 5% and should show the results
for annual compounding, monthly compounding, daily compounding and continuous
compounding.

Interest
Rate

Annual com-
pounding

Monthly com-
pounding

Daily com-
pounding

Continuous
compounding

1%
2.5%
5%
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15.3.2 Application and Reasoning Problems

15.4. Suppose that you are a manufacturer of widgets. At your current level of production,
you have determined that each one unit increase in the production level will decrease the
revenue by $0.28. Each unit of increase in the production level leads to a drop in costs
of $0.34. Each day, your plant is improving efficiency, so each day the production level is
expected to increase by 32 units. At what rate is the profit changing? Would you continue
to increase the production? Why?

15.5. Prove that the exponential function of the form y = AeBx is an always increasing
function of x (assuming that B is positive and A is positive). In other words, show that this
function never reaches a maximum and then starts to decrease. Such functions are referred
to as monotonically increasing.

15.6. Prove that the logarithmic function y = A + B ln(x) is a monotonically increasing
function.
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15.3.3 Memo Problem

To: Analysis Staff
From: Cassandra Nostradamus, CEO
Date: May 30, 2008
Re: Loan options

Oracular Consulting is planning to purchase $1,000,000 in computer equip-
ment and software to upgrade the main server and our web presence. Since we do
not want to reduce our liquid assets by this amount, we are considering several
different loan possibilities. The terms of these loans are described below.

Loan A Loan B Loan C Loan D
APR 6% 5% 3% 2%
Number of Years 2 3 5 10
Payments per year 12 12 4 4

Analyze the four loans and provide a well-reasoned recommendation as to
which loan (or loans) would be the best choice. It would certainly be nice to
choose a loan that we can pay off as quickly as possible, but that may require very
high monthly payments. If we are willing to pay large monthly payments, then
we can take a short term for the loan, but if we need to lower the payments, we
need to make a decision on some other characteristics. The three obvious ones are
to compare the length of the loan, the total interest paid over the lifetime of the
loan, or the monthly equivalent payments for the loan (the amount we pay each
period, pro-rated to a monthly budget amount).

Attachments: None - create your own to display the results


