
Chapter 11

Graphical Approaches to Nonlinear
Data1

The basic idea of this chapter is that not all relationships are linear. In fact, many of
the most commonly occurring relationships come from other families of functions such as
exponentials or polynomials. In this chapter, we’ll explore the shapes of these different
functions and learn how to control their shapes through the parameters of the model. Then,
we will put our knowledge of nonlinear models to work in chapter 12 (page 347) to build and
interpret nonlinear regression models.

• As a result of this chapter, students will learn
√

Know what the parameters, constants and coefficients in a model are√
Know the basic shapes for each of the basic non-proportional models of interest
(logarithmic/log, exponential, square, square root and reciprocal)√
Logs and exponentials are inverse functions to each other

• As a result of this chapter, students will be able to
√

Select and justify a choice of non-proportional model from among several possible
candidates√
Choose an appropriate non-proportional model based on a scatterplot√
Determine something about the parameters of a model from looking at a scatter-
plot√
Shift the graph of a model around in order to make it better fit the data√
Stretch the graph of a model in order to make it better fit the data

1 c©2011 Kris H. Green and W. Allen Emerson
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11.1 What if the Data is Not Proportional

Our first assumption when modeling data using regression is that the data is based on an
underlying linear relationship. Such relationships are said to be proportional: if the x data
increases by a certain amount, the y data increases by a fixed constant times that same
amount. The fixed constant relating the x-variable changes to the y-variable changes is the
called the slope of the linear model.

For many sets of data, however, the assumption of linearity is quite false. For example,
the amount of electricity used in a house is related to the size of the house; larger houses
are more expensive to heat or cool, so they tend to use more electricity. However, this
relationship does not mean that doubling the size of the house always doubles the electricity
costs. Much of the electricity use comes from lights, computers, televisions, and radios. No
matter how much bigger the house, a family of four can only use so many of these devices
at one time. So while the cost may increase, we might expect a more dramatic increase in
electricity use when comparing a small house to a medium house, but a much less dramatic
increase when comparing a medium-sized house to a large house. This implies that the slope
of the model relating the electricity costs (y) to the size of the house (x) would be different
for large houses than for small houses. In a linear function, this slope must be the same,
regardless of the x-value being considered.

11.1.1 Definitions and Formulas

Non-proportionality Any model relating two variables (say x and y) in such a way that
changes in one variable are not in a constant ratio to the changes in the second variable
is said to be non-proportional. Another way of describing this is by saying that there
is no constant k for which the following relation is true:

y2 − y1 = k(x2 − x1)

In the mathematical world and in the real world, most models are non-proportional.

Level-dependent Any model that is level dependent is also said to be non-proportional.
The term level-dependent emphasizes that with such models, the amount that the y
variable increases for a given increase in x is different if the starting point (x value or
location along the horizontal axis) is moved. In other words, you can look at different
x and y values and compute their differences. When we compare them, if we find that
y2 − y1 = k12(x2 − x1) and y4 − y3 = k34(x4 − x3), but the k values are different, then
the model is level-dependent and represents a non-proportional relationship.

Concavity Concavity is a property of non-proportional models. It refers to the amount
that the graph of the model bends. If the graph bends upward, that part of the graph
is said to be ”concave up”. If the graph bends downward in a certain area, then the
graph is ”concave down” in that area. Remember: concave up looks like a cup; concave
down looks like a frown.
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Basic function One of the six functions listed below as prototypes for fitting nonlinear
data:

• linear,

• logarithmic,

• exponential,

• square,

• square root, or

• reciprocal.

In general, a function is a mathematical object that takes an input, usually in the form
of a number or a set of numbers, and gives an output number. (There are other types
of functions possible, but we will concentrate on functions that satisfy this definition.)
For a relationship between two variables, say x and y, to be a function, it must satisfy
the following statement:

Every x-value must be associated with one and only one y-value.

This means that if you draw a graph of the function, and draw a vertical line through
any point on the graph, that line will only touch the graph once. This is sometimes
referred to as the vertical line test. Generally, if the variable y is a function of the
variable x, we write y = f(x) to indicate this. If the variable y is a function of several
variables (say x1, x2, x3) then we write y = f(x1, x2, x3).

Linear function Graphs of linear functions (see figure 11.1) are straight lines. The pro-
totypical, or base, form of a linear function that related y to x is given by y = x.
You are more used (by this point) to seeing this in a more general form, involving two
parameters, the slope and y-intercept: y = A + Bx. The graph of a linear function is
shown below. Notice that linear functions are straight; they have no concavity at all.

Logarithmic function A logarithm (see figure 11.2) is a mathematical function very useful
in scaling data that spans a large range of values, like from 1 to 1,000,000 (we will see
this aspect of logarithms in a later chapter). In general, there are lots of different
logarithmic functions. We will be using the natural logarithm of x as a function; this
is written as y = ln(x). (Notice: natural logarithm = nl→ ln.) The graph of the basic
natural logarithm is shown below. The basic logarithm is increasing and concave down
everywhere.

The natural logarithmic function has several important properties to note. The natural
log of 0 is undefined; in other words ln(0) does not exist. If 0 < x < 1 then ln(x) < 0,
and ln(1) = 0. This means that the point (1, 0) is common to all basic log functions.
This is actually a restatement of the fact that any base raised to the zero power is
equal to 1.

Exponential function Exponential functions (see figure 11.3) are related to logarithmic
functions. These can be written in two ways. The first form is as a base number raised
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Figure 11.1: The basic linear function y = x.

to a variable power (y = ax). The most common base to use is the number e, which
is approximately 2.71828. . . In reality, e is an irrational number, like π. It shows up
naturally in many situations, as we will see in example 4 (page 455) from chapter 15
(page 443) when examining interest rates. For now, though, the standard exponential
function we will use is y = ex. The second form is similar to this, but easier to type:
y = exp(x). This can be read as ”y is the exponential function of x” or ”y equals e
raised to the x power.” Its graph is shown below. The basic exponential function is
increasing and concave up everywhere.

In addition, since any positive number, like e, raised to a negative power is a number
between 0 and 1, we know that if −∞ < x < 0 then 0 < ex < 1. Since any number
raised to the zero power is 1, we also know that e0 = 1 so the point (0, 1) is on the
graph of all basic exponential functions.

Square function You are probably familiar with the squaring function: it takes every
number put into it and spits out that number raised to the second power. Thus, if we
stick in the number x, we get out x2. Thus, the basic squaring function is y = x2. The
graph of this function has a special name that you may have heard before: a parabola.
It looks like the letter ”U”, centered at (0, 0). The basic squaring function is concave
up everywhere. as shown in figure 11.4.

Square root function The square root function does the opposite of what the squaring
function does. This function takes in a number and spits out its square root. The
square root of a number is that number which, when squared, produces the number.
For example, 2 is the square root of 4, since 2 × 2 is 4. The square root function
is usually written as y =

√
x. Another way to write the function reminds us of its

relationship with the squaring function: y = x1/2 = x0.5. (Read this as: y is x raised



11.1. WHAT IF THE DATA IS NOT PROPORTIONAL 315

Figure 11.2: The basic logarithmic function y = ln(x).

to the one-half power or x to the 0.5 power.) The basic square root function is concave
down everywhere. In figuer 11.5, the square root function is not graphed for values of
x less than 0, since the square root of a negative number is an imaginary quantity.

Reciprocal function The reciprocal function takes a number and returns one divided by
that number: y = 1

x
. This function also has an alternative form in which x is raised

to a power: y = x−1. Notice that the reciprocal function shown in figure 11.6 has
several interesting features: It has different concavity on the left and the right; it does
not even exist at x = 0 since any number divided by zero is undefined; in fact, the
reciprocal function never crosses either axis.
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Figure 11.3: The basic exponential function y = exp(x).

Figure 11.4: The basic squaring function y = x2.
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Figure 11.5: The basic square root function y =
√
x.

Figure 11.6: The basic reciprocal function y = x−1 = 1
x
.
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11.1.2 Worked Examples

Example 11.1. Using a graph of the data to see nonlinearity
Consider the data graphed below. What can we say about it? It appears that as x increases,
the y values decrease. It also looks like the data is bending upward. Mathematicians call
this behavior ”concave up”. Let’s see what happens when we apply a linear regression to
these data.

Figure 11.7: Does a linear function fit these data well?

It looks like a good candidate for fitting with a straight line, and the R2 value is acceptable
for some applications, but notice there are distinct patterns in the data, when compared to
a best fit line. On the left, the data is mostly above the line, in the middle, the data is
mostly below the line, and on the right, the data is mostly above the line. Patterns such
as this indicate that changes in the Y data are not proportional to changes in the x data.
To put this another way, the rate of change of y is not constant as a function of x, which
means there is no single ”slope number” that is the same for every point on the graph.
Instead, these changes are level-dependent: as we move our starting point to the right, the y
change for a given x change gets smaller and smaller. In a straight line, this is not the case:
regardless of starting point, the y change for a given x change are the same. If the data are
best represented by a linear model, we would not see any patterns in the data points when
compared to the model line; the points should be spread above and below the best-fit line
randomly, regardless of where along the line we are. For the graph above, though, we do see
a pattern, indicating that these data are not well suited to a linear model.

Notice that R2 by itself would not have told us the data is nonlinear, because the data is
tightly clustered and has little concavity. Clearly, the more concave the data is, the worse R2

will be for a linear fit, since lines have no concavity and cannot capture information about
concavity.

Example 11.2. Comparing logarithmic models and square root models
You may have noticed that two of the functions above, the square root and the logarithmic,
look very similar. Why do we need both of them? After all, the two graphs (see figure 11.8)
have very similar characteristics. For example, both start off very steep for small values of x
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and then flatten out as x increases. Both graphs continue to increase forever. Neither graph
exists for negative values of x.

However, the graphs are actually quite different. For instance, consider the origin. The
point (0, 0) is a point on the square root graph (since the square root of zero is zero,) but
it is not a point on the logarithmic graph. In fact, if you try to compute the natural log of
zero, you will get an error, no matter what tool you use for the calculation! The logarithmic
function has what is called a ”vertical asymptote” at x = 0. This means that the graph gets
very close to the vertical line x = 0, but never touches it. This is quite different from the
square root graph which simply stops at the point (0, 0). Furthermore, the square root has
a horizontal intercept of x = 0, while the logarithmic graph crosses the x-axis at (1, 0).

Figure 11.8: Comparison of standard log and square root functions.

You might be tempted to think that we could simply ”move” the logarithmic graph over
so that they both start at the same place, (0, 0). Figure 11.9 shows what happens if we pick
up the graph of y = ln(x) and move it to the left one unit, so that both graphs pass through
(0, 0). Notice that the square root graph rises sharply and then flattens, while the natural
log graph rises more gradually. It also appears that the slope of the square root graph is
larger and that it continues to grow larger, widening the gap between the two functions.
In fact, the natural log grows so slowly that the natural log of 1,000 is only 6.9 and the
natural log of 1,000,000 is 13.8! Thus, if the x-values of your data span a large range, over
multiple orders of magnitude, a natural log may help scale these numbers down to a more
reasonable size. This property of logs makes them useful for measuring the magnitude of an
earthquake (the Richter scale) or the loudness of a sound (measured in decibels). Compare
this growth to the square root function: The square root of 1,000 is about 31; the square
root of 1,000,000 is 1000. This is a much larger increase than the natural log. In fact, of all
the basic functions, the natural log is the slowest growing function; in a race to infinity, it
will always lose.

Example 11.3. Comparing exponential models and square models
You may have also noticed that, for positive values of x, the graphs of the exponential
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Figure 11.9: Comparison of horizontally shifted log and square root function.

function and the square function are very similar. Both are increasing. Both are growing
large at a faster and faster rate, which shows in the graphs from the increasing steepness of
each graph as x grows larger. This property of getting larger at an increasing rate is referred
to as being ”concave up.” This makes the graphs bend upward, away from the x-axis so that
it looks like a cup that could hold water. Both graphs also start rather flat near the origin.

Here is where the similarities end, though. The square function has a vertical and horizon-
tal intercept at (0, 0). The exponential function, on the other hand, has a vertical intercept
of y = 1, but no horizontal intercept at all. Much like the logarithmic function (see the
previous example) the exponential function has an asymptote. In this case, though, it is a
horizontal asymptote at y = 0, rather than a vertical intercept at x = 0. In addition, when
we look at the graphs for negative values of x, we see that the exponential function is always
increasing, while the square function is decreasing for x < 0. This means that the square
function has a minimum, or lowest, point.

These properties are also easy to see numerically from working with the functions them-
selves. If I take a negative number and square it, I get a positive number. Thus, (−3)2 = +9,
(−2)2 = +4, (−1)2 = 1, etc. Notice that as the negative values of x get closer to 0, the
output of the square function is decreasing. For an exponential function, we notice negative
exponents are really a shorthand way of writing ”flip the function upside down and raise it
to a positive power.” Thus, to compute e−2, we compute 1/e2 ≈ 1/7.3891 ≈ 0.1353. This is
where the asymptotic nature of the exponential function shows through; for large negative
powers, we are really computing one divided by e raised to a large positive power. Since e
to a large positive power is a large positive number, one over this number is very small and
close to zero.

As it turns out, the exponential function is the fastest growing of all the basic functions.
In a race to infinity, it will always win.
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Figure 11.10: Comparison of exponential and squaring functions.
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11.1.3 Exploration 11A: Developing our intuition about data that
is non-proportional

Four graphs are shown below. For each, consider which of the basic functions you think
would fit the data best. For your function, then describe what you think should be done to
its graph in order to make it fit the data best. It might need to be shifted left or right, sifted
up or down, flipped vertically or horizontally, stretched or squashed, or some combination
of these.

Data Best choice for basic func-
tion

How to alter the function to fit

Annual Salary

Minimum Wage

Time

Interest
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Now open the file ”C11 Exploration2.xls”. Test each of the possible trendlines (linear,
logarithmic, exponential, power and polynomial of order 2 - do not use the moving average
or higher order polynomials.) Be sure you display the equation and R2 value for each of the
possible models. Write down the equation of the best fitting model and record its R2 in the
chart below.

Data Best Fit Trendline Equation R2

Annual Salary

Minimum Wage

Time

Interest
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11.1.4 How To Guide

Adding Trendlines for Non-proportional Models

Excel can add trendlines for some non-proportional models to graphs. The process is virtually
identical to the process used to add linear trendlines in Excel. (See the ”How To Guide” for
part 2 of chapter 7 (page 199) for details and screen shots.) The only difference is that in
step 2 you should select the following options:

• To get an exponential fit, choose ”exponential”

• To get a logarithmic fit, choose a ”logarithmic”

• To get the square fit, use ”Polynomial” and select ”Order 2”

• It is not possible to force Excel to generate trendlines for reciprocals or square roots
directly. As it turns out, these are specific cases of the more general ”Power” models.
However, if you add a ”power” trendline to a graph, the power is one of the parameters
in the model (like slope or y-intercept) so you probably will not get a power of 0.5 (= 1

2

which is a square root model) or a power of −1 (for a reciprocal model). We’ll talk
about how to force Excel to fit these types of models with regression in the next chapter.

Computing Values of Exponentials and Logarithms

Excel uses a standard notation to compute the exponential or logarithm of a number. The
notation looks a lot like the notation we have been using above:

• To compute the value of e3, type ”=EXP(3)” in a cell and hit enter.

• To get the value of e raised to whatever is in cell B2, type ”=EXP(B2)”

• To compute the natural logarithm of 3, type ”=LN(3)”

• To compute the natural log of the number in cell B2, type ”=LN(B2)”

Note that Excel (and most calculating tools) have another logarithm function. This is
the LOG(x) function. There is a slight difference between LOG(x) and LN(x). For our
purposes, we will always use LN(x) when we talk about the logarithm of x.

Technical details: LOG(x) stands for the base-10 logarithm of x. LN(x) stands for the
base-e logarithm of x. Essentially, when we compute a base-b logarithm of the number x
we are finding the value of a so that the following equation is true: ba = x. For example,
since 102 = 100, we know that the base-10 logarithm of 100 is 2 (i.e., log10(100) = 2.) Since
25 = 32 we know that log2(32) = 5. Excel really only has options for base-e logarithms (LN)
and base-10 logarithms (LOG). There are many other useful logarithm bases, but these are
the most common, and there is a mathematical technique that relates logarithms of any two
bases: logb x = ln(x)

ln(b)
.
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11.2 Transformations of Graphs

The basic functions introduced in the last section are very useful. With these, we can fit
a lot more data than we could with just straight lines. However, we often find that the
data matches the shape of one of these basic functions, but not the specific location and
specific points that the basic function passes through. Consider the data shown on the left
scatterplot below. The data shows the number of products (in this case motors) returned
from a production line as a function of the amount of money spent on inspections in a given
month (in thousands of dollars). On the right is a graph of this same data, but with the
graph of the basic square function superimposed on it. They have the same shape, but are
not exactly the same: The square function starts too low and rises much more quickly than
the actual data, and they are not in the same place on the graph.

Figure 11.11: Graph of number of motors returned versus inspection expenditures.

The way to fix this is to ”move the basic function around” until it fits more closely. This
is very much like what we did with straight lines before: we knew we wanted a straight
line, but we needed to change the slope and y-intercept until the theoretical line matched
up better with the data. For the data above, it looks like we need to ”squash” the square
function down and move the starting point over and up. In this section, we’ll explore the
mathematical way of doing this. When we are done, we will have developed formulas for
the basic functions that are more general and contain several parameters (almost always
two). These parameters are, in general, much harder to interpret than the parameters in a
linear model, but once we understand how they affect the graphs, we’ll be able to out some
meaning to them.
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Figure 11.12: Graph of inspection expenditures with poorly fitting square model added.

11.2.1 Definitions and Formulas

Parameters A parameter is a number in the formula for a function that is constant. Chang-
ing a parameter will change the entire behavior of the function. The two parameters
you are most familiar with are the slope and y-intercept of a linear function. If the slope
parameter is changed, the line is more or less tilted; it may even change the direction of
the tilt. If the y-intercept is changed, the graph crosses the y-axis at a different point.
Most functions come in families of functions that all have the same formula, but the
formula has parameters in it. Thus, linear functions of the form should really be called
the ”family of linear functions” since there are two parameters in the formula. To get
the equation of a specific member of the family, we need to substitute in values for
each of the two parameters, A and B. (Just like you need a first and last name to find a
specific person in your family; you may sometimes need even more information about
the person if more than one person in the family has the same name. Some functions
also need more than two parameters. See quadratics below for such an example.)

Power functions This is a broad family of functions. The general form of a basic power
function is where b is a number. Thus, this family includes the squaring function
(b = 2), the square root function (b = 1

2
), the reciprocal function (b = −1), and

the basic linear function (b = 1). This family is called the family of power functions
because the independent variable, x, is always raised to a power. The shape of a power
function depends on whether the power, b, is even or odd. Even power functions look
something like a ”U” when graphed. Odd power functions (with b > 1) look more like
chairs: on the left they drop off; on the right they rise up high; in the middle they are
relatively flat. All basic power functions pass through the origin (0, 0) and the point
(1, 1). This is because zero raised to any power is zero and 1 raised to a power is always
1.
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Polynomials A polynomial is a function made from adding together a bunch of power
functions that all have whole number powers. (A whole number is a number like 5,
2, 0. Negative numbers and numbers with decimals and fractions are not allowed.)
Each power function in a polynomial is multiplied by a coefficient and then they are
all added together:

y = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x

1 + a0

Notice that since anything raised to the zero power is 1, there is no need to write x0 in
the last term. Each of the individual combinations of a coefficient and a power function
in a polynomial is called a term. Polynomials include several well-known families of
functions: the quadratics (see below) and the linear functions:

y = A+Bx.

The n in a power function gives the highest power in the polynomial. It is called the
order of the polynomial. The shape of a polynomial function is highly dependent on
the order of the polynomial, since this determines the leading power function in the
polynomial. The following general statements can be made:

If n is even, then the polynomial function does the same thing on both sides of the y-
axis: it either rises up on both sides or drops down on both sides. If n is odd, then the
polynomial does the opposite on both sides: one side will rise, the other will drop. The
order also determines two other properties: the maximum possible number of times
the polynomial crosses the x-axis (the number of zeros) and the number of time the
graph changes direction (either from increasing to decreasing or vice versa):

• Maximum number of zeros = n

• Maximum number of turning points = n− 1

Quadratics A quadratic function is a second-order polynomial that produces a ”generalized
squaring function”. It is usually written in the following way:

y = Ax2 +Bx+ C.

You may have seen the famous quadratic formula. This is a formula for finding the
roots of a quadratic equation. Roots are places where the function crosses the x-axis,
so these points all have y = 0. Thus, they are solutions to the equation:

0 = Ax2 +Bx+ C.

Using the quadratic formula, we can find the x-coordinates of these crossing points:

x =
−B ±

√
B2 − 4AC

2A

Excel will add quadratic trendlines to a graph; however, it refers to them by their more
proper name as ”polynomials of order 2”.
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Vertical shifting Sometimes the data we are trying to fit looks exactly like a basic function,
but moved up or down. We can fix this by adding in a vertical shift to the equation.
If the graph of a function has been vertically shifted, the graph has the same exact
shape, only every single y-value has been increased by the same amount or every y-
value has been decreased by the same amount. Effectively, this moves the entire graph
of the function either up or down the y-axis. Thus, a vertical shift by k will move the
y-intercept up by k units.

Horizontal shifting Sometimes, the data is moved right or left of the basic function that
it is most similar to. We can compensate by adding a horizontal shift to the equation
of the graph. If a graph has been horizontally shifted, the graph has been moved to
the right or the left. Thus, if the graph is moved to the right h units, then the zeros
of the function (if any) will all move to the right h units.

Translation This is the general term to refer to any type of shift (vertical or horizontal).

Vertical scaling It is sometimes necessary to stretch a graph out or compress the graph of
a basic function so that it will match up better with the data. This can easily be done
by multiplying the entire function by a scaling factor.

11.2.2 Worked Examples

Example 11.4. Vertical shift
Consider the data shown in the table below for y = f(x). If we make a new function by
adding the same amount, say 10, to each of these y values, then we will be creating the
function y = f(x) + 10; each y value will be 10 more than it would be without the increase.
This will result in the graph of the function being shifted up by 10 units at each data point.
It’s just like we picked up the graph and slid it up the y-axis 10 units.

x y = f(x) y = f(x) + 10
0 10 20
1 15 25
2 12 22
3 3 13
4 6 16
5 11 21
6 15 25
7 19 29
8 25 35
9 23 33
10 22 32

Example 11.5. Horizontal shift
We can also shift a graph to the left or right. In the last example, we added a value to all
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Figure 11.13: Graph of y = f(x) (solid line) and y = f(x) + 10 (dashed line).

the y values in order to shift the graph up or down the y-axis. To shift left and right, we
need to add or subtract from the x values. For example, suppose we wanted to move the
graph four units to the right. The old graph would have the point (x, y) corresponding to
the statement that y = f(x). The new graph should have the point (x+ 4, y). So if the old
graph had the point (3, 3), the new graph should have the point (3 + 4, 3) or (7, 3). Here’s
the catch, though, the function will only give 3 for y if we plug in a value of 3 for x. We
want to plug in 7 for x and get 3 out. Thus, we need to subtract 4 from each x value in order
to make sure the function gives the right output. This means that to shift the function to
the right 4 units, we need to plot the graph of y = f(x− 4). This is shown in the data table
below and the graph beside it.

x y = f(x) y = f(x− 4)
0 10 ?
1 15 ?
2 12 ?
3 3 ?
4 6 10
5 11 15
6 15 12
7 19 3
8 25 6
9 23 11
10 22 15
11 ? 19
12 ? 25
13 ? 23
14 ? 22

Example 11.6. Vertical scaling
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Figure 11.14: Graph of y = f(x) (solid line) and y = f(x− 4) (dashed line).

We can also stretch the shape of a graph out. Suppose that we have a set of data that looks
parabolic, so we want to use the square function. But suppose that the data contains the
points (1, 1), (2, 8), (3, 18), and (4, 32). For a basic squaring function, this can’t happen; the
shape is right, but 2 × 2 = 4, not 8; 3 × 3 = 9, not 18; and 4 × 4 = 16, not 32. But notice,
that each of the actual data values is simply twice what the squaring function would give.
Thus, we want to graph y = 2x2. This means that we should take each value of x, compute
x2, and then multiply the result by 2. This stretches the graph out to fit the data.

We can also compress a graph, squashing it down flatter instead of stretching it up taller.
Suppose that the data contains the points (1, 0.5), (2, 2), (3, 4.5) and (4, 8). Each of the
y values is half of what we would expect from the squaring function, so we want to graph
y = 0.5x2. We see that the general form to scale the graph of y = f(x) is y = a×f(x) where
a is a constant. The graphs below show the basic squaring function and the two functions
we have just created.

But what happens if we let a be a negative number? This will simply take each of the old
y values from the function and put a negative sign in front of them. This flips the graph over
the x-axis, creating a mirror reflection of the original graph. Thus, the graph of y = −f(x) is
the same as the graph of y = f(x) except that it is flipped over the x-axis. In a similar way,
multiplying x by a factor can scale the graph horizontally, and negating x flips the graph
horizontally over the y-axis.

Example 11.7. Combination of Shifts and Scales
Consider the graphs shown in the introduction to this section in figure 11.11 (page 325).
The data for the number of motors returned as a function of inspection expenditures looks
to be a basic squaring function, but shifted and scaled. Here’s another look at the graph.

It looks like the graph has been shifted to the right 60 units and up 64 units. Thus, we
could start by comparing the data to the graph of y = f(x − 60) + 64 = (x − 60)2 + 64.
When we do this, we find that the graph starts in the right place, but climbs too quickly.
We might be tempted to simply multiple this whole thing by a constant less than one in
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Figure 11.15: Graphs of y = x2 (solid line), y = 2x2 (dashed line) and y = 0.5x2 (dotted
line).

order to squash the graph, but this would also multiply the vertical shift by the constant,
changing the starting place. We must complete the shifts and scaling in the proper order.
We need to construct the fit by first shifting right, then scaling, then shifting. So, we are
looking for a function of the form y = af(x− 60) + 64 = a(x− 60)2 + 64.

How much should we squash the graph? In other words, how big is a? The best approach
here is to try a few data points. It looks like the point (80, 68) is on the graph. Plugging
these values in for x and y we get the following:

68 = a(80− 60)2 + 64

68 = a(20)2 + 64

68− 64 = a(20)2

4 = a(20)2

4

202
= a

a = 0.01

Thus, the equation of the function that seems to match the data is y = 0.01(x−60)2 +64,
where y represents the number of motors returned, and x represents the amount of money
(in thousands) spent on inspection expenditures in a given month. We should check this
against a few more data points, to be certain that the function is the correct one. Since the
point (75, 66) also appears to be on the function, we evaluate our candidate function at this x
value to see if they match. At x = 75 our function is equal to y = 0.01(75−60)2 +64 = 66.25
which is very close to the value given by the data. We don’t expect a perfect fit, because
the data is not taken from an abstract function, but actually came from a real situation, so
there will likely be some error in the best-fit function.
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Figure 11.16: Graphs of y = x2 (solid line) and y = −x2 (dashed line).
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11.2.3 Exploration 11B: Shifting and Scaling the Basic Models

Download and open the file C11 Exploration3.xls. The file contains several macros, so when
you open the file, you you may need to click on the options button next to the security
warning. Then select the option labeled ”enable the content”. (This is part of the security
of the computer; many viruses and computer worms are hidden in macros.) When you get
the file open, you should see a screen like the one shown below:

Figure 11.17: Excel file for exploring the various shifts and scalings with the basic functions.

There are six worksheets in the workbook, one for each of the basic functions we have
been discussing. On each worksheet there are three slider bars and three graphs. Each graph
shows the graph of the basic function itself (in blue) and one other graph (in pink). As you
change the slider values, make note of how the graph of the pink function changes and how
the different equations shown next to the slider bars change. To see some of the graphs, you
may need to right click on them and select ”Bring to Front” since Excel layers its graphs on
top of each other in order to save ”screen real estate”. Use the worksheets and the sliders
to help fill in the details about each of the functions below.
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Linear Function, f(x) = x
Modification Sketch Description
y = af(x)

y = f(x− h)

y = f(x) + k

Logarithmic Function, f(x) = ln(x)
Modification Sketch Description
y = af(x)

y = f(x− h)

y = f(x) + k

Exponential Function, f(x) = ex

Modification Sketch Description
y = af(x)

y = f(x− h)

y = f(x) + k
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Squaring Function, f(x) = x2

Modification Sketch Description
y = af(x)

y = f(x− h)

y = f(x) + k

Square Root Function, f(x) =
√
x

Modification Sketch Description
y = af(x)

y = f(x− h)

y = f(x) + k

Reciprocal Function, f(x) = 1
x

Modification Sketch Description
y = af(x)

y = f(x− h)

y = f(x) + k



336 CHAPTER 11. NONLINEAR MODELS THROUGH GRAPHS

11.2.4 How To Guide

Setting up functions in Excel for shifting and Scaling

In the how-to for chapter 7 (page 199), we introduced the idea of setting up an Excel
spreadsheet to calculate a table of function values. We can use this same idea for calculating
the values of a function with arbitrary shifts (horizontal and vertical) and scalings. For
example, suppose we want to fit a shifted curve to a set of data that has x-values in cells
A6:A25 and y-values in cells B6:B25. Let’s add in some parameter values. Enter labels for
each shift in A1:A3 and sample values for these shifts in B1:B3. You now have a worksheet
that looks something like the one at the right.

Now we need to add in a column of values for the predicted y data, according to our
formula, using the shifts and scales. Suppose that we want to use a logarithmic function to
try and fit the data. So, we want to try to use the formula

y = (Vertical shift) + (Vertical Scale)*ln(X + Horizontal shift)

To do this, we enter the following formula into cell C6 and copy it down the column
(Note: This is a formula for the logarithmic model we are currently working with; for other
models, you will have to develop a different formula):

= $B$1 + $B$3*ln(A6 + $B$2)

Notice that we are using absolute cell references to look up the values of the parameters
and compute the predicted y-values. This way, the constants will remain correct as we copy
the formula down, but the x-values will change, based on which row we are in. This format
will easily allow us to change the shifts and scales to try and match the actual data (in
column B). A visual representation (a scatterplot) would also help, since the graph would
help you see the shifts and try to move the graph of the predicted y-values closer to the
actual data.

Create a scatter plot with more than one y-variable on the same axes

StatPro will not allow you to create a graph with more than one dependent variable plotted
against the same independent variable. For example, in the graph below you see two y-values
plotted for each x-value. To generate such graphs, you will have to use the chart wizard in
Excel. The steps are outlined below.

1. Highlight all the data you wish to graph, including all the y-variables. Make sure that
your data is organized with the x-variable (the independent variable) in the left-hand
column.

2. Click on the Chart icon in Excel or go under ”Insert” and click on ”Chart”

3. Click on xy-scatter

4. Click through all the ”Next”’s and click ”Finish”

5. Move/resize your graph
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Figure 11.18: Setting up a function with vertical and horizontal shifts, and a scaling factor.

Calculating R2 for your fit of the data

Now, it can be very hard to see if your shifts and scales have done a good job at fitting the
data, so it is helpful to add in computations to determine the value of R2 the coefficient of
determination. For this, we’ll need to compute the mean of the actual y-data, the variation
in the actual y-data, the residuals, and finally the R2.

1. Compute the mean of the actual y-data.

A good place to put the mean of the actual y-data is to put it at the bottom of the
column of y-data, separated from the data by a blank row. So, in cell A28 we place a
label ”Y Mean” and in cell B28, we place the formula ”=average(B6:B26)” to compute
the mean of the y-data.

2. Compute the variation in the actual y-data.

The variation in the y-data is the sum of the squares of the differences between each
y-value and the mean of the y-data. So, we add a column to the right of the data to
compute the square of these differences. In cell D5, place the label ”(y-mean)ˆ2”. In
cell D6, we place a formula to calculate the squared difference: ”=(B6-$B$28)ˆ2” and
then copy this formula to the other cells in the column. At the bottom of the column,
in cell D28, we compute the sum of these squared differences: ”=sum(D6:D26)”. This
sum of the squared differences is the total variation in the y-data.

3. Compute the residuals (and the sum of their squares).

We now do a similar calculation in column E. We need the squares of the differences
between the actual y-data and the predicted y-data. In cell E5 we place the label
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”Residualˆ2”. In cell E6, we put ”=(B6-C6)ˆ2” and copy this formula to the rest
of column E. At the bottom of this column, in cell E28, we sum up these squared
residuals: ”=sum(E6:E26)”.

Figure 11.19: Spreadhseet for using parameters to attempt finding a best fit to a set of data.

4. Compute R2.

The value of R2 can be calculated by subtracting the ratio of the sum of the squares
of the residuals and the total variation in the y-data. So, in cell D2, we place the label
”R2” and in cell E2 we enter the formula ”=1 - E28/D28”. This will probably result in
an R2 value that is not between 0 and 1. This is because we have not actually created
a ”best fit” line until we do some adjustment on the parameters.

When you’re done, the spreadsheet should look like figure 11.19 (you can add a graph in
as well, by selecting the first three columns of data and making a scatterplot of them).

Using Goal Seek to find the best values for the shifts and scales

Once you have the spreadsheet configured to compute a set of y values based on your pa-
rameters for the shifts and scales, and have added the calculation for R2 into the sheet to
see how well your shifted and scaled curve fits the data, you can try to find the best values
of the shifts and scales in one of two ways: trial and error or using goal seek. Trial and error
is tedious, and can be difficult, if the data is tightly packed. Often, changing a value doesn’t
produce any noticeable change in the graph, making this process even harder. We recom-
mend that you start by trial and error to get roughly the right values of the parameters,



11.2. TRANSFORMATIONS OF GRAPHS 339

then refine the values with goal seek. (Goal seek was introduced in the computer how-to for
section 7B.)

Suppose your spreadsheet is set up in the following way: You have values for three
parameters (horizontal shift, vertical shift, and scale) in cells B1, B2 and B3. You have a
calculated value of R2 from the data and your best fit in cell E2. Now, there’s no guarantee
that the data can be ”perfectly fit” so we can’t try to goal seek for R2 = 1. We also don’t
know ahead of time what the ”best R2” is, so we have to work our way up to it. Select the cell
with the R2 value in it. Then activate goal seek with ”Tools/ Goal Seek”. In the blank for
”To value” enter a number that is a little better than the current value of R2. For example,
if the current value is 0.90, try entering 0.91. Now, the ”By changing” cell should be one of
the three parameters. Do this systematically: goal seek by changing the first parameter (B1)
then repeat this, changing B2, then repeat changing B3, and start again at B1. Eventually,
you’ll get the R2 up close to the ”best possible” value. Each time, try increasing the ”To
value” amount a little, say 0.01 at a time. At some point, you’ll know you’re close to the best
when the routine spits out ”Goal seek may not have found a solution.” When this happens,
goal seek again with the same target value, but using the other parameters.
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11.3 Homework

11.3.1 Mechanics and Techniques Problems

11.1. This problem deals with what happens to equations of functions and graphs of
functions if you apply several different transformations, one after the other. Take y = f(x) =
x2 and write out each of the following functions. For each step, explain what happens to the
graph in terms of how the particular change affects the appearance of the previous graph in
the sequence.

Function Written out What happens to
graph

y = f(x) = x2

y = f(x− h)

y = af(x− h)

y = af(x− h) + k

11.2. How would the results in problem 1 be different if we changed the order to y =
a[f(x− h) + k]?

Function Written out What happens to
graph

y = f(x) = x2

y = f(x− h)

y = f(x− h) + k

y = a[f(x− h) + k]

11.3. Now repeat 1 with a basic exponential function.
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Function Written out What happens to
graph

y = f(x) = exp(x)

y = f(x− h)

y = af(x− h)

y = af(x− h) + k

11.4. Now repeat 1 with a basic logarithmic function.

Function Written out What happens to
graph

y = f(x) = ln(x)

y = f(x− h)

y = af(x− h)

y = af(x− h) + k

11.5. For each of the five graphs below

1. Select the best basic function to fit the data,

2. Select appropriate shifts (direction) and scaling (stretch or compress), and

3. Write down a possible equation for the graph.

11.6. Consider the data shown below in both table and graphical format.

x y
0 2.05
5 2.69
10 3.55
15 4.23
20 4.35
24 5.08
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Figure 11.20: Graphs for problem 5.

1. Create a scatterplot of the data, and determine which order polynomial function (2
through 6) fits the data best. Record the results of your investigation in a table like
the one shown below.

Order Equation R2

2

3

4

5

6

2. Use the parameters from your quadratic trendline (the order 2 polynomial) to manually
calculate the Se for that model. You may want to set up a spreadsheet like the one in
figure 11.22.
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Figure 11.21: Graph of the data from problem 6.

Figure 11.22: Set up to calculate R2 and Se in problem 6.

11.3.2 Application and Reasoning Problems

Coming soon
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11.3.3 Memo Problem

To: Analysis Staff
From: Project Management Director
Date: May 28, 2008
Re: DataCon Contract

We have received a contract from DataCon, a large data analysis provider
that does general data analysis and management contracting for a wide variety
of manufacturing and service sector businesses. They have subcontracted some
of their business to us. They want us to fit some predictive models for four sets
of data they have sent along. They want to see a best-fit Excel trendline for
each data set, as well as a model that we come up with that is superimposed
on both the scatterplot of the data and the best-fit trendline (See the How To
Guide). DataCon management wants not only Excel’s trendlines but also good
fitting models we construct from shifts and scaling of basic functions because
models built from basic functions are more transparent and easier to analyze than
Excel’s trendline models.

As usual, direct your memo to me. Include the following:

• A brief introduction

• A ”Paste Special” copy into Word of your spreadsheet for each data set (there
will be 4 such copies). Each spreadsheet copy will include the data set, along
with your computations for R2, and your settings for the parameters of your
best-fit model.

• A copy of filled-in chart below.

• A few summary comments, including any special considerations your want
to pass along about what you found.

Attachment: Data file C11 DataCon Data.XLS

Here are some suggestions for dealing with this assignment:

1. Start by fitting the best Excel trendline (don’t forget to record its equation and its R2)
to a scatterplot of the data set. The table below (or one like it) will help organize the
information.

2. Now try fitting your own shifted and scaled basic function on top of the scatterplot
and the best-fit trendline, comparing your computed R2 to the R2 of the trendline.

3. You probably won’t be able to better Excel’s trendline (though you might!), but get
as close as you reasonably can. That’s all DataCon really wants or needs.



11.3. HOMEWORK 345

4. Here are a couple of tips:

(a) Don’t even try to do your own fit for a polynomial function (used when the scatter
plot has a turn(s), etc) because Excel’s polynomial fit is clear and understandable
already. Your job, in this case, is to find Excel’s best-fit polynomial.

(b) If you are fitting your own exponential function, don’t bother with horizontal shifts
because mathematically such shifts can be absorbed by the scaling parameter.

(c) If Excel’s best trendline is a power function with a fractional power, for example,

X0.42, use X0.5 for your own power function because X0.5 = X1/2 =
√

(X), which

is much easier to understand (remember, this is what DataCon wants).

DATA SET 1 EQUATION R2

My Best Fit
Excel’s Trendline Fit

DATA SET 2
My Best Fit
Excel’s Trendline Fit

DATA SET 3
My Best Fit
Excel’s Trendline Fit

DATA SET 4
My Best Fit
Excel’s Trendline Fit
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