
Chapter 12

Modeling with Nonlinear Data1

In the last chapter, we learned a lot about different types of functions that can be used to
model data when the data does not represent a proportional relationship. In this chapter,
we’re going to put this knowledge to use making and interpreting regression models of such
non-proportional data. To do this, we need to go through a few steps:

1. First we transform the data using some of these functions. There are only four transfor-
mations that we need; combining them in different ways can produce all of the models
we have talked about.

2. Next we perform the regression.

3. In some cases, we’ll need to compute the summary measures (R2 and SE) by hand.

4. Finally, we have to make sense of the models we get by putting them into a useful form
and determining what the parameters in the model actually mean.

• As a result of this chapter, students will learn
√

Which transformations of the data will linearize the data√
That some summary measures are not accurate when using nonlinear regression√
That transformations of data can help to minimize non-constant variance in data√
What the parameters in each of the nonlinear models actually mean

• As a result of this chapter, students will be able to
√

Transform variables using StatPro√
Accurately compute R2 and SE for nonlinear models containing log(response)√
Transform the regression equations of nonlinear models into standard form√
Calculate the effects of changes in the explanatory variable on the response vari-
able using ”parameter analysis”

1 c©2011 Kris H. Green and W. Allen Emerson
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348 CHAPTER 12. MODELING WITH NONLINEAR DATA

12.1 Non-proportional Regression Models

To perform nonlinear regression, we have to ”trick” the computer. All the regression routines
in the world are essentially built on the idea of using linear regression. This means that we
must find a way to ”linearize” the data when it is non-proportional. Consider the data shown
in figure 12.1. It represents the cost of electricity based on the number of units of electricity
produced in a given month. The relationship is obviously in the shape of a logarithmic
function.

Figure 12.1: Graph of electricity cost vs. units of electricity.

Since the relationship indicates a logarithmic relationship, we examine, in figure 12.2,
a graph of Cost vs. Log(Unit). Notice that this graph is ”straighter”, indicating that we
could use linear regression to predict Cost as a function of Log(Units). Thus, we can ”trick”
the computer into using linear regression on nonlinear data if we first ”straighten out” the
data in an appropriate way. An explanation of the straightening out process can be found
in example 5 (page 354).

Another way to say this is that the relationship is linear, but it is linear in Log(x) rather
than linear in x itself. Thus, we are looking for an equation of the form y = A + B log(x)
rather than an equation of the form y = A + Bx. Notice that we are free to transform
either the x or the y data or both. These different combinations allow us to construct many
different models of nonlinear data.

We can also perform nonlinear analyses on data with more than one independent vari-
able. In most cases, though, the only appropriate model for such data is a multivariable
power model, called a multiplicative model. Such models are used mainly in production and
economic examples. A famous example is the Cobb-Douglas production model which pre-
dicts the quantity of production as a function of both the capital investment at the company
and the labor investment. See the examples for more information.

In the rest of this section, we’ll talk about how to select and complete the appropriate



12.1. NON-PROPORTIONAL REGRESSION MODELS 349

Figure 12.2: Graph of the electricity cost vs. the logarithm of electricity units used. Notice
that this relationship is more linear than the one in figure 12.1 (the correlation is higher.) In
a sense, we have ”straightened” the data by taking the logarithm of the explanatory variable.

transformations, how to use these in the regression routines of StatPro, and how to compute
R2 and Se in certain cases.

12.1.1 Definitions and Formulas

Multiplicative Model Basically this is a power function model for multivariable data.
Also referred to as a ”constant elasticity” model. (Elasticity is described in the next
section.) A multiplicative model with two independent variables takes the form

y = AXB
1 x

C
2

where A, B, and C are all constants (parameters).

Cobb-Douglas This is a model for total production based on the levels of labor investment,
capital investment, and other investments that influence productivity. If K = capital
investment, L = labor investment and P = production, the Cobb-Douglas model look
like

P = AKBLC

Notice that it is a multiplicative model as discussed above. There are some important
cases in the Cobb-Douglas model depending on the values of the two powers, B and
C. In general, these constants are both less than 1. The model reflects the idea that if
you have a lot of labor investment (lots of workers) but not enough capital (equipment
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for the workers to use) then productivity is hampered. If you have a lot of capital
(equipment for production) but not the labor to use it, then production also suffers.

Non-constant Variance This is a problem that often occurs in real data. The basic issue
is that the residuals seem to ”fan out”. Thus, as the independent variable increases,
the variability of the data around the proposed model increases systematically. (It is
also possible for the variation to decrease systematically; this is less common, however.)
Although the underlying pattern may be linear, non-constant variance is also ”fixed”
by an appropriate transformation of the variables.

12.1.2 Worked Examples

Example 12.1. One independent variable example (X transform)
The electricity data shown above (see figures 11.A.1 and 11.A.2 and the data file C12
Power.xls) seems to be linear in either square root(units) or log(units) rather than linear
in units. This means that we can construct a model for the cost of the electricity that is
linear in either square root(units) or log(units). This model will look like Cost = A+Bx.

However, the x in this case will be either square root(units) or log(units) rather than units.
To construct the models, we start by creating new variables in the data called ”sqrt(units)”
and ”log(units)”. StatPro allows you to do this automatically through the ”Data Utilities/
Transform Variables” function (see the How To Guide for details.) Once we have these new
variables, we then go through the normal regression routines, using ”Cost” as the response
variable and either ”Sqrt(units)” or ”Log(units)” as the explanatory variable. The result of
the regression routine when using sqrt(units) is shown below.

Results of multiple regression for Cost

Summary measures
Multiple R 0.8786
R-Square 0.7719
Adj R-Square 0.7652
StErr of Est 2540.5818

ANOVA table
Source df SS MS F p-value
Explained 1 742724176 745724176 115.0698 0.0000
Unexplained 34 219454912 6454556

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant 6772.5645 3290.6382 2.0581 0.0473 85.1875 13459.94
Sqrt(Units) 1448.7365 135.0544 10.7271 0.0000 1174.2730 1723.19

This leads us to the first nonlinear model for this data:
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Cost = 6,772.56 + 1,448.74*Sqrt(units).

This model is linear in square root(units). We can perform the same technique using the
log(units) variable. The output from the regression routine is shown below and leads us to
the model equation:

Cost = -63,993.30 + 16,653.55*Log(Units).

This model is logarithmic in units; it is also said to be linear in log(units). This idea that
the model is linear in a transformed variable is how we ”trick” the computer into creating
non-proportional models by performing linear regression. Notice that the logarithmic model
is slightly better (it has a lower standard error) but the constant term is negative, making
interpretation of this model more difficult.

Results of multiple regression for Cost

Summary measures
Multiple R 0.8931
R-Square 0.7977
Adj R-Square 0.7917
StErr of Est 2392.8335

ANOVA table
Source df SS MS F p-value
Explained 1 7.68E08 7.67E08 134.0471 0.0000
Unexplained 34 1.95E08 5.23E06

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant -63993.3047 9144.3428 -6.9981 0.0000 -82576.8329 -45409.78
Log(Units) 16653.5527 1438.3953 11.5779 0.0000 13730.3838 19576.82

Example 12.2. Another one independent variable example (Y transform)
Consider again the data in C13 Power.xls. Suppose we decide to construct a power function
fit for the data. Basically, a power model is a model in which the log(response) variable is
linear in the log(explanatory) variable. Thus, we seek a model of the form

Log(Cost) = A + B*Log(Units).

For this, we first create variables log(cost) and log(units). We then perform the standard
linear regression, using Log(cost) as the response and log(units) as the explanatory. The
result is shown below. N.B. The summary measures are completely useless for this type of
model, since they are all based on Log(Cost) rather than actual cost. We must compute
the correct summary measures for ourselves (see the How To Guide of this section for an
example and the steps.) The actual correct summary measures are R2 = 0.7736 and Se =
2530. These are slightly better than the results of the linear fit (R2 = 0.7359, Se = 2733.)
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Results of multiple regression for Log(Cost)

Summary measures
Multiple R 0.8967
R-Square 0.8040
Adj R-Square 0.7983
StErr of Est 0.0617

ANOVA table
Source df SS MS F p-value
Explained 1 0.5312 0.5312 139.4835 0.0000
Unexplained 34 0.1295 0.0038

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant 7.8488 0.2358 33.2797 0.0000 7.3695 8.3281
Log(Units) 0.4381 0.0371 11.8103 0.0000 0.3627 0.5135

Example 12.3. The Multiplicative model
Consider the data shown in file C12 Production.xls. This data shows the total production
of the US economy (in standardized units so that it is 100 in 1899) as well as the investment
in capital (K, also standardized) and labor (L, also standardized). We want to construct a
model for predicting the productivity as a function of the capital and labor. We basically
take two approaches with such multivariable data:

Approach 1. Try a multiple linear model.
Approach 2. If the linear model doesn’t work well, try a multiplicative model.
Approach 1 in action. First we try predicting P as a linear function of K and L. (This is

just like multiple linear regression models that we have seen before, so we omit some details.)
The resulting model and summary measures are shown below.

P = −2 + 0.8723L+ 0.1687K
R2 = 0.9409
Se = 11.1293

Thus, it seems that a linear model does quite well, based on this information. However,
in examining the diagnostic graphs, we notice that the residuals seem to spread out. To
correct this, we try logging all the variables and producing a multiplicative model.

Approach 2 in action. So, now we transform each of the variables using the logarithmic
transformation in StatPro. This produces three new variables - log(P ), log(K) and log(L).
We then perform a multivariable regression on log(P ) as a function of both log(K) and
log(L) to get the following results. Notice that we have computed the actual R2 and Se

values using the techniques described in the computer how to for this section. Since we
have logged the response variable (P ) we cannot believe the regression output values for the
summary measures.
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Figure 12.3: Plot of residuals versus fitted values for a linear model of predicting production
vs. labor and cost.

log(P ) = −0.0692 + 0.7689 log(L) + 0.2471 log(K)
R2 = 0.9386
Se = 11.3449

This model has about the same explanatory power as the linear model (very high, both
are above 90% for R2.) Furthermore, we notice that the patterns in the residuals are no
longer apparent. Interpreting this model will be left to the next section, but note that we
can, with a little algebra, convert the model equation into the familiar form for a Cobb-
Douglas production model. The result is P = 0.9331L0.7689K0.2471. Such models play an
important role in many economic settings.

Example 12.4. Non-constant variance
The data in file C12 Baseball.xls shows the salaries of over 300 major league baseball players
along with many of their statistics for a particular season. Suppose that we want to predict
the salary of a player based on the number of hits the player had during the season in order
to test the assumption that better players have higher salaries.

If we do this, we see that the model is not very accurate (R2 = 0.34). The reason for this
is apparent in the plot of the residuals versus the fitted values (figure 12.4). One clearly sees
the fan shape of these residuals, indicating that higher salaries also have higher variation
from the model predictions.

To handle a fan that opens to the right, we typically log the response variable. Thus, we
look for a model of the form log(y) = A+Bx. Transforming the response variable produces
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Figure 12.4: Plot of the residuals versus the fitted values when Salary is regressed against
Hits.

the model equation log(Salary) = 5.1305 + 0.0151*Hits. This model has the pattern for
the residuals shown above in figure 12.5. Notice that the non-constant variance is greatly
reduced. There does remain some narrowing of the pattern on the left, but this is largely
due to the fact that there is a minimum salary in the data, so that there are no observations
with actual salaries below a certain level.

It is also possible for the residuals to fan in the opposite pattern: spread out on the left
and narrowing to the right. If this is the case with the data, we typically use the reciprocal
of the response variable in the model.

Example 12.5. Straightening out data
The two graphs below show how the logarithmic function can be used to straighten out data
that is non-proportional. In figure 12.6, we see data (indicated by the diamond shapes)
that does not appear to be linear. These data have the coordinates (xi, yi). To straighten
the data out, we plot y versus the natural log of each of the x coordinates using squares to
indicate these points in figure 12.7. Thus, we see how the original data points (xi, yi) are
transformed to the data (ln(xi), yi) which have a less extreme curve.
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Figure 12.5: Plot of the residuals versus the fitted values when log(Salary) is regressed
against Hits.

Figure 12.6: Plot of original data (left) and linearized data (right).
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12.1.3 Exploration 12A: Learning and Production at Presario

(This problem is adapted from the data and example given in Data Analysis and Decision
Making by Albright, Winston, and Zappe, example 11.6.)

The data from C12 Learning.xls is taken from the Presario Company. This company
manufactures small industrial products. The data show the length of time it took Presario
to produce different batches of a new product for a customer. Clearly, the times tend to
decrease as Presario gains experience with the production of this item. This indicates that
the relationship between the time to complete a batch and the number of the batch is not a
linear. We are going to explore this relationship.

1. First construct new variables for the logarithm of the batch number and the logarithm
of the time to complete a batch.

2. Create the following scatterplots:

Dependent Variable Independent Variable
Time Batch
Log(Time) Batch
Time Log(Batch)
Log(Time) Log(Batch)

Which of these graphs represents the most linear relationship? On what criterion (or
criteria) are you judging this?

3. For each combination of variables, construct the regression model and determine the
summary measures. Notice that for two of these models, the regression output will
produce incorrect values for the summary measures. Which of these models is the best
based on the summary measures? How does this compare with your choice of best
model from the graphical approach in part 2?
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12.1.4 How To Guide

Using StatPro’s Data Transformation Utility

Often it will be necessary to create models of the data that are not linear models. In order to
do this using regression analysis, we must first transform the data with a nonlinear function
(using StatPro, or typing the formulas into Excel ourselves) and then perform regression
using these new, transformed variables as the data.

To have StatPro transform the data, follow these steps:

• Select the data (click anywhere in the data)

• Open the ”StatPro” menu on the toolbar

• Select ”Data Utilities”

• Select ”Transform”

• Choose an appropriate transformation, based on the model you need (see below)

Figure 12.7: Dialog box for transforming a variable in StatPro.

There are four basic transformations available in StatPro (shown in the screen shot
above). These can be combined to produce a wide variety of models, shown in the chart
below, under ”What transformations to use”. Also note that the data transformation tool
will allow you to shift the data by a known constant, opening up the number of different
types of models you can produce to be much larger than your patience would allow you to
investigate.

What transformations to use

Okay, now that you know how to use the transformation tool in StatPro, you need to know
what variables to transform for each of the nonlinear models that you might encounter.
Consult the table below for the type of model you want, and what variables you need to
create in order to produce a regression model of that type. We assume that the original data
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contains two variables, the response variable and the explanatory variable, and we assume
that you are trying to develop a model equation to predict the response as a function of the
explanatory.

To create this type of model Response Variable Explanatory Variable(s)
Linear model Response Explanatory
Square model Response Sqr(Explanatory)
Quadratic model Response BOTH Explanatory and

Sqr(Explanatory)
Logarithmic model Response Log(Explanatory)
Exponential model Log(Response) Explanatory
General Power model Log(Response) Log(Explanatory)
Multivariate Power Model
(multiplicative model)

Log(Response) Log(Explanatory 1),
Log(Explanatory 2), etc.

Reciprocal model Response Reciprocal(Explanatory)
Square Root model Response SqRt(Explanatory)

Transformations without StatPro

It is easily possible to construct these transformations without StatPro. Suppose you have
a variable ”X” extending from cell B1 to cell B51, with a label for the variable name in B1.
In column C we will construct the natural log of this data, using the built-in Excel formula
for the natural log: LN. Thus, the natural log of the observation in B2 is ”=LN(B2)”. Then
fill down formula down to all the cells in column C.

To compute the square of a number, use the caret symbol (ˆ) and the power 2 in the
formula. Thus, in column D we can construct the square of the data ”=B2ˆ2”.

To compute the square root, use the formula ”SQRT”. To compute the reciprocal, use
the fact that the reciprocal of X is just 1/X.

Computing Se and R2 for nonlinear models

This is appropriate only for models in which the y variable (the response variable or depen-
dent variable) is transformed. For example, if the model equation is of the form

ln(y) = A+Bx
eln(y) = eA+Bx

y = eAeBx

you will need to complete the process below in order to determine the actual Se and
R2 of the model, since the summary statistics from the regression output are not based on
the actual y variable at all. Thus, you only need to go through these steps when produc-
ing exponential models (like the example above), power function models, or multiplicative
models.

This process will be broken down into several steps, listed in order below. A sample
worksheet with all the formulas listed is shown as well, be sure you complete the steps in the
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proper order. The numbers on the sheet show the order in which the columns and formulas
should be constructed.

Recall that for exponential and multiplicative (power) regression models, the original
response variable Y has been transformed by the log function. This means that the standard
error of estimate for the model cannot be used to interpret how accurately the model fits
the original Y data. The following activity will guide you through the process of finding a
standard error of estimate that conforms with the original Y data.

Bring up the data found in C12 Power.xls. We will fit an exponential model to this data
and then compute the that is consistent with the original cost data. After we have Se, we
can compute the R2.

1. The exponential model can be constructed with the following steps

• StatPro

• Data Utilities

• Transform Variable(s)

• Select ”cost” to transform

• Select Log transformation

A B C D
1 Data on cost versus production level
2
3 Month Cost Units Log(Cost)
4 1 45623 601 10.72817
5 2 46507 738 10.74736

2. Perform regression using Log Cost as the response variable. Be sure to check off the
box to have the routine create columns for ”fitted values” and ”residuals”. If you do
not do this, start step (2) over. We must have the fitted values in order to complete
this process.

The Standard Error of Estimate of the model with response variable Log(Cost) cannot
be directly used in interpreting how accurately the model fits the original Cost data.
StatPro will insert a blank column (E) between the calculations. In order to remain
consistent with the screen images and formulas below, you should right click on column
E (in the original data) and select ”Delete” from the context menu that appears.

Your data sheet now looks like this:

A B C D E F
1 Data on cost versus production level
2
3 Month Cost Units Log(Cost) Fitted Values Residuals
4 1 45623 601 10.72817 10.6373 0.0908
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3. Next, we transform the Fitted Values produced by the model, which approximate the
actual Log(Cost) values, back into the original cost units by applying the Antilog
function (exp) to the fitted values with Exp(Fitted Values). Thus, in cell G4, type the
formula ”=EXP(E4)”. Then fill this formula down to copy it to all the data.

4. Create the columns indicated below, in order, from left to right. In this case, remember
that (a) the ”Actual” values are the cost data. Column H ”Actual minus EXP(Fitted)”
is the residual data that is squared to produce the data in column I.

E F G H I
1
2
3 Fitted Residuals Exp(Fit) Resid Residˆ2

Values
4 10.6373 0.0908 41661.43 3961.57 15694061.87
5 10.7463 0.0010 46458.42 48.58 2360.07
6 10.7049 -0.0280 44575.85 -1232.85 119923.07

5. We are ready to apply the formula for the standard deviation of the sum of the squares
of the residuals (SSR):

√
Sum of Squares of Residuals

n− p
=

√
SSR

n− p

The bottom right corner of your data sheet should look something like this:

H I
37 2387.82 5701660364
38 -36.70 1346.99
39 2485.24 6176425.81
40
41 Sum of Residˆ2 296201375.38
42 Parameters (p) 2.00
43 Data Points 36.00
44 S E 2951.58

The number of parameters refers to the number of coefficients that your regression
model was used to predict. In this case, there are two parameters. In general, the
number of parameters for this step is the number of independent variables plus 1. This
number is the p in the formula for standard error. The number of data points is the
actual number of observations contained in the data. This is the n in the formula for
standard error above.

Thus, about 2/3 of the actual cost data will fall within $2951.58 of the cost predicted
by the exponential model.
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To compute the R2 value, we need to first compute the mean of the original y data, in
this case, the cost data. It’s also useful to have the standard deviation of the y data in
order to compare the and determine how accurate the model really is. Once we have
the actual mean of the y-data, we need to create another column to the right of our
previous calculations. This column should compute the square of the actual values
minus the mean of the y data. Thus, if you have the mean of the y-data in cell B41,
the formula for the first entry in column J (J4) will be ”=(B4 - $B$41)ˆ2”. Fill this
formula down the column to get all the data.

Next, compute the total variation, the sum of all the results in column K. We have
placed this information in cell J46. To get R2, we then use the formula for R2:

R2 = 1− SSR

Total Variation

Thus, in cell J47, we enter ”=1 - I41/J46” to get the actual R2 for this model.

NOTE: The following figures show a final result of these calculations, all on one spread-
sheet, with all the formulas written out and explained. However, the formulas are dif-
ferent than this example. The reason is because in the example above, we have deleted
the blank column E that StatPro inserts during the regression. In the image below, it
has not been deleted.

CELL Formula CELL Formula
B41 =average(B4:B39) J44 =sqrt(J41/(J43-J42))
B42 =stdev(B4:B39) K46 =sum(K4:K39)
J41 =sum(J4:J39) K47 =1-J41/K46
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COLUMN Information
D Created by ”Data Utilities/Transform Variables” - This is the Log

of the COST Variable.
F and G Created by the Multiple Regression routine ONLY IF you remem-

ber to click the last check box in the diagnostic options during
the regression setup. The ”Fitted Values” are fitted LOG(Cost)
values. The residuals are the difference between Log(Cost) and
Fitted - not what we need.

H These are the model’s actual predictions for the Cost. To get
these, we need to ”unlog” the Fitted Values Column. We do this
with the exponential function, which is EXP in Excel. Thus, in
cell H4 we enter =EXP(F4) and copy this down the H column.

I This column shows the real residuals - the difference between Cost
and Exp(Fit). In I4 type =B4-H4 and copy this to the whole
column.

J This column computes the square of each of the residuals. Simply
enter the formula =I4ˆ2 and copy this down the column.

K This column computes the square of the difference between each
data point’s Y-value (COST) and the mean of all the actual Y-
Values. This is the variation of the data point. To compute this,
in cell K4 enter =(B4-$B$41)ˆ2 and fill down the column.

Figure 12.8: Screen showing the set up for calculating R2 and Se for nonlinear models.
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12.2 Interpreting a Non-proportional Model

In the last section, we were concerned with finding the most appropriate regression model
that would best fit a set of non-linear (i.e. non-proportional) data through a process of
”straightening out” the data by transforming one or more of its variables. In this section,
we will be concerned with how certain changes in the independent variable of such a non-
proportional model bring about certain changes in its dependent variable by interpreting the
model’s parameters in a way that is reminiscent of the way we study the slope parameter of
a proportional model. Specifically, we will look at two ways to measure change for both the
response and the explanatory variable: total change and percent change.

Total change is usually a level dependent quantity for non-proportional models. This
means that we get very different amounts of total change at different levels of X values,
even for the same total change in X. However, the idea of percent change incorporates this
level dependency in its very definition. In fact, we have four basic combinations of the ways
of measuring change. By examining these different combinations, we can develop a way
of interpreting the parameters of regression models that we produce, for linear and many
nonlinear models:

Total change in response variable vs. total change in explanatory variable
Total change in response variable vs. percent change in explanatory variable
Percent change in response variable vs. total change in explanatory variable

Percent change in response variable vs. percent change in explanatory variable

However, it is not always easy to appreciate, and hence interpret, the parameters in the
form in which they appear in the regression equations, as they appear in the first part of this
chapter. This situation becomes apparent as we look at the chart of various models on page
358. It is not obvious, for example, why a model whose response variable has been logged
and whose explanatory variable has not been logged is called an exponential model; likewise,
it is not obvious why a model whose response variable as well as its explanatory variable
has been logged is called a power model. Using the rules of exponents and logarithms, we
shall rework each of these two regression models so that their coefficients become readily
identifiable as the parameters in an exponential and a power function, respectively. From
here, we will be able to readily interpret the effects of change in logarithmic, exponential,
and power models in terms of their parameters in such a way that accounts for their level.

For example, we will find that the parameters in a logarithmic model are more easily
interpreted if we look at the total change in the response variable contrasted to a 1% change in
the explanatory variable. Exponential models on the other hand, are more easily interpreted
by considering the percent change in the response variable contrasted to the total change
in the explanatory variable. Interpreting the parameters in power functions is most easily
done by examining the percent change in the response variable compared to a 1% change
in the explanatory variable. For all of these models, the total or percent change in the
response variable will depend directly on the values of the parameters in the model. Other
non-proportional models, such as the quadratic or square root models, are not so easy to
interpret in terms of their parameters and must await further developments in a later chapter.
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12.2.1 Definitions and Formulas

Total Change Total change is a measure of the amount that a function changes from one
data point to the other. Thus, if y is a function of the variable x we can find the value
of y at two different x coordinates and then compute the total change in y. Note that
the symbol ”delta” which looks like a triangle is the symbol for change:

∆y = f(x2)− f(x1)

Notice that we always consider total change based on the assumption that the second
x coordinate is larger than the first. In other words, we are looking at the change in y
as x increases.

Rate of change This is an idea similar to the slope of a straight line, but rate of change
can be applied to non-linear models. Rate of change measures the steepness of a graph
at a given point (more precisely, we are talking about instantaneous rate of change).
The steeper the graph is, the larger the rate of change is. If the rate of change is
negative at a point, the graph is decreasing at that point. If it is positive at a point,
the graph is increasing at that point. If it is zero, the graph could be at a maximum or
a minimum value, or could be at a saddle point. Measuring rate of change is what the
first semester of calculus is really all about. For our purposes, we want to understand
the rate of change as a number. It’s useful for telling us ”how much bang we get for
each buck”. In other words, if we add more to the x variable (the bucks we spend)
what does the rate of change say we get out (the bang). The rate of change of a
function is closely related to the total change: usually we get at the rate of change
through dividing the total change in Y by the total change in x. For linear functions,
this number is the constant slope of the function. For nonlinear functions, the rate of
change is level dependent.

Percent Change In many cases, it is easier to interpret the percent change in a quantity
than to interpret the total change or the rate of change of the quantity. Percent
change in a quantity is the total change divided by the original amount. Thus, if we
start at the point (x, f(x)) and move to the point (x + h, f(x + h)), the total change
is f(x+ h)− f(x), but the percent change in y is this divided by f(x):

y2 − y1

y1

=
f(x+ h)− f(x)

f(x)

Notice that the percent change is a dimensionless number that represents a percent in
decimal form. Thus, if the percent change of a model is 0.3 at a particular point, then
this means that increasing x results in a 0.30 → 30% change in y at that point.

Units We’ve talked about this before, but it’s even more important now. Each number in
a model (the constants, or parameters) will have some units associated with it. These
units will help to interpret the meaning of the constant. So pay careful attention to
the unit of measurement for each and every variable. Also note that the rate of change
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has units; these units are always the units of the response variable divided by the units
of the explanatory variable.

Elasticity Elasticity is an economic term for measuring the rate of change in a specific way.
Elasticity is the actual rate of change divided by the current level. Thus, elasticity is
really a measure of the percent change in the function, rather than a measure of the
actual change (as the instantaneous rate of change is.) In fact, the elasticity of y with
respect to x is the percentage change in y that results from a 1% increase in x.

Inverse functions Two functions, f and g, are inverses of each other if they satisfy the
property that f(g(x)) = x and g(f(x)) = x. This means that if you do something to x
(like apply f to it to produce the number f(x)) and then do its inverse to it, you get
back to the number you started with, x. In this chapter, the two functions that are
important, ln(x) and exp(x), are inverses of each other.

Parameter Analysis A way of using the idea of change and percent change to interpret
the coefficients (parameters) in a nonlinear regression model. Note that this is not a
standard term.

Marginal Analysis This is a way of interpreting the amount of change in a function.
Specifically, marginal analysis is used to answer the question ”If the explanatory vari-
able increases by one unit, by how much does the response variable change?”

Properties of Exponents You will need these properties in order to properly work with
the regression output and convert it into a useable form. Sometimes you will apply
these properties starting with the left side and converting it to the right side; other
times you will have to go the other direction.

E1 b0 = 1

E2 brbs = br+s

E3 (br)s = brs

E4 br

bs
= br−s

Properties of Logs You will need these properties in order to properly work with the
regression output and convert it into a useable form. Sometimes you will apply these
properties starting with the left side and converting it to the right side; other times
you will have to go the other direction.

L1 ln(er) = r

L2 eln(a) = a

L3 ln(a) + ln(b) = ln(ab)

L4 ln(a)− ln(b) = ln
(
a

b

)
L5 r · ln(a) = ln(ar)
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12.2.2 Worked Examples

Example 12.6. Converting regression output of an exponential model
The regression output for an exponential model will be of the form

ln(y) = A+Bx

To convert this to the form ”y = . . .” we need to first exponentiate both sides of the
equation in order to ”undo” what has been done to y. (Remember, ln(y) and exp(y) are
inverse functions, so each undoes the other.) We will go step-by-step through the process.

Algebraic Step Explanation
ln(y) = A+Bx This is the output from the re-

gression routine, written in equa-
tion form.

exp(ln(y)) = exp(A+Bx) Exp(x) is the inverse of ln(x) and
if we do something to one side
of an equation, we must do it to
both sides of the equation.

y = exp(A+Bx) Using the property that loga-
rithms and exponentials are in-
verses, we know this is true.

y = exp(A) · exp(Bx) Property E2.

Thus, we are left with the functional form of the equation: Y = eA · eBX .
To calculate (eA) in Excel, enter the formula ”=EXP(A)”. Also note that we can use

property E3 to rewrite the functional form as y = eA
(
eB
)x

. The reason for doing this is

that the base of the exponent, exp(B), tells us how much things will increase. In fact, it
tells us that regardless of the current level of output in the function, if x increases by 1 unit,
the output will be exp(B) times that much. (Thus, if B is a number such that exp(B) = 2,
we know that increasing x by 1 unit results in the output, y, being multiplied by 2.)

Example 12.7. Converting regression output for power models
This is similar to converting an exponential model, only we need a few extra steps.

Algebraic Step Explanation
ln(y) = A+B ln(x) This is the output from the re-

gression routine, written in equa-
tion form.

exp(ln(y)) = exp(A+B ln(x)) Exp(x) is the inverse of ln(x) and
if we do something to one side
of an equation, we must do it to
both sides of the equation.

y = exp(A+B ln(x)) Property L2 (in disguise).
y = exp(A) · exp(B ln(x)) Property E2.
y = exp(A) · exp(ln(xB)) Property L5.
y = exp(A) · xB Property L2 (in disguise).
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This gives us the functional form of a power model: y =
(
eA
)
xB.

Example 12.8. Interpreting the rates of change for each model type
The examples below are taken from the data used for the introduction to this section. You
can find this data in C12 Power.xls. The response variable is the cost of the electricity
produced based on the number of units of electricity produced that month (the explanatory
variable.) For this data, we construct a number of different nonlinear models to try and
explain the data based on the models. Note how each different model provides a different
insight into the way the cost of electricity is dependent on the number of units of electricity
that are produced.

1. Linear Models

(a) Equation: Y = A+Bx

(b) Interpretation: As X increases by 1, Y increases by B units

(c) Example: If Cost = 23651 + 31*Units, for each additional unit of electricity that
is produced, the cost increases by $31. Thus, the constant B is measured in the
units dollars per unit of electricity.

2. Exponential Models

(a) Equation: Y = AeBX

(b) Interpretation: As x increases by 1, y increases by a factor of (eB − 1)

(c) Example: If we have the model ln(Cost) = 10.1592 + 0.0008 ∗Units, then Cost =

25828·e0.0008·Units, (notice: e10.1592 = exp(10.1592) = $25,828), for each additional
unit, the cost increases by (e0.0008− 1) ≈ 0.0008 = 0.08%. This means that if you
are currently at a level of 500 units, costing $38,531, then an additional unit will
increase the cost by 0.080% of $38,531, about $30.82. In this case, the units of the
constant are 1/units of electricity produced; this way the product of the constant
B and the variable units has no units of measurement so we can exponentiate it.

3. Logarithmic Models

(a) Equation: y = A+B ∗ ln(x)

(b) Interpretation: As x increases by 1%, y increases approximately 0.01B

(c) Example: If Cost = −63993 + 16653 · ln(units), then if the level of production
(number of units) increases 1%, then the cost increases by approximately 0.01 ·
16653 = $166.53. Note that this means that the higher the production level, the
greater the change required to produce the same increase in cost. At a production
level of 100 units, a 1 unit increase will add about $166.53 to the cost. However,
at a production level of 500, it will take a 5 unit increase in production to increase
the cost by $166.53.

4. Power Models
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(a) Equation: y = AxB

(b) Interpretation: As x increases by 1%, y increases approximately B%

(c) Example: If ln(Cost) = 7.8488 + 0.4381 · ln(Units), then Cost = 2563 · units0.4381,
since exp(7.8488) = 2563. If the production level increases 1%, then the cost will
increase by about 0.4381%; that is, add a percent sign after the number B to find
the percent increase. At a production level of 100 units, the cost is about $19273.
If the level increases 1 unit (1%) then the cost will increase by 0.4381% of 19273
= $84. At a production level of 500, the cost is $39009, and a 1% increase in
production (5 units) will increase the cost by about $171.

5. Quadratic Models

(a) Equation: y = Ax2 +Bx+ C

(b) Interpretation: If A is positive, then there is a minimum point at x = −B/2A. If
A is negative, then there is a maximum point at x = −B/2A

(c) Example: Suppose we have the model: Cost = 5793 + 98.35 · Units − 0.06 ·
Units2. Since the coefficient of units2 is negative, so the model estimates there is
a maximum point at a production level of −(98.35)/2 · (−0.06) = 820units.

6. Multiplicative Models

(a) Equation from regression output: ln(y) = C +B1 ln(x1) +B2 ln(X2)

(b) Equation rewritten in standard form: Y = AxB1
1 xB2

2 . Note : exp(C) = A.

(c) Interpretation of B1: As x1 increases by 1%, y increases by about B1% from its
current level (holding the other explanatory variable constant)

(d) Interpretation of B2: As x2 increases by 1%, y increases by about B2% from its
current level (holding the other explanatory variable constant)

(e) Example: In the Cobb-Douglas model P = 0.939037L0.7689K0.2471 where P =
Production, L = Labor, K = Capital, we see that as labor (L) increases by
1%, production increases by about 0.7689% from its current level. As capital
increases by 1%, production increases by about 0.2471% from its current level.
If labor is currently at 200 and capital is currently at 500, then the current level
of production is 256.37, so that a 1% increase in Labor (that is, 2 more units of
labor are added), then production will increase by .7689% from its current level
of 256.37 which is about 1.97 units. If capital increases by 1% of 500, i.e. 5, then
production will increases by 0.2471% from its current level of 256.37 (increase of
about 0.63 units).

We will refer to the results of this table - the rules for interpreting the parameters in
each of these different types of models - as parameter analysis. To truly understand where
these guidelines come from requires a little calculus. However, you can get a pretty good
understanding of why these work based simply on playing with numbers in a spreadsheet. By
creating a spreadsheet that calculates values of a function, total changes in the function, total
changes in the explanatory variable, and percent changes in the variables, one can easily see
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where the rules come from and why they are only approximate. A spreadsheet for this has
been constructed and is available under C12 ParameterAnalysis.xls. This workbook contains
a worksheet for each of the basic functional models above: linear, logarithmic, exponential,
power, and quadratic. Each sheet allows you to change the parameters in the model and
observe how the different ways of measuring change react.
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12.2.3 Exploration 12B: What it means to be linear

One of the main ideas of a linear function is proportionality. One way to visualize this is
shown in C12 StepByStep.xls. On the first worksheet, labeled ”linear”, you will see a straight
line graphed. In addition, you will see three stair steps, three dotted lines (all horizontal) and
two sliders at the top. The idea is that, in a linear function, if you walk a certain distance
along the horizontal axis (the run), this forces you to climb up the function a certain amount
(the rise).

Figure 12.9: Screen shot of C12 StepByStep.xls.

If I take three steps with the same horizontal distance each, and look at the rise that this
produces, I will see something interesting; I could compute this total rise from three steps by
just multiplying the rise from one step by 3. This is shown by the dotted lines; each dotted
line marks the rise after a certain number of steps: the first line marks your place after one
step, the second line marks your place computed by doubling the first step, and the last line
marks the place you would get to by tripling the first step.

Furthermore, we can play with the sliders to change both the size of the first horizontal
step and the location of the starting point for the first step. Regardless of the starting point
or the size of the first step, both ways of computing the place on the line result in the same
amount of change.

However, this is not the case in a non-linear function. Look at the worksheet labeled
”Nonlinear”. This shows a similar set up, but with a curved graph, rather than a straight
line. Here, we notice that regardless of the initial placement or the size of the first step, the
two ways of computing the change are not equivalent. This is because the amount of change
is level dependent in nonlinear functions.

We can summarize all of this in mathematical notation. For a linear function given by
y = f(x), we find that taking n steps of size ∆x results in the same answer as taking one
step of size ∆x and multiplying this by n. Thus, for a linear function, we find the total
change in y to be

∆y = f(x1 + n∆x)− f(x1) = n [f(x1 + ∆x)− f(x1)] .

However, for a nonlinear function, this is not true.
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12.2.4 How To Guide

Creating a column-oriented, one-variable data table

Excel makes it easy to create tables of data from formulas using a data table. Essentially,
you create a column of values you want to substitute into the formula, and enter a sample
computation of the formula. Then you tell Excel which cell is the input cell and it substitutes
all your values into the formula at once, producing a table of outputs corresponding to each
input.

Figure 12.10: Setting up a column-oriented, one variable data table.

Suppose you want to make a table of data so that you can compare two functions. If
your functions are both quadratic, we might set up the spreadsheet as shown below. In cells
B1:C3, we have entered two sets of A, B, and C values for a quadratic function of the form

y = Ax2 +Bx+ C

In cell B5 we have entered a sample x value. This x value will be used to generate sample
calculations for the data table in cells B7 and C7. These cells contain the calculation of the
functions, using the formulas

B7 = B1*B5*B5+B2*B5+B3

C7 = C1*B5*B5+C2*B5+C3

Once you have the sample calculations, you then create a list of the values you want to
substitute into the formulas for x (the sample x in cell B5 will be replaced by the x values
in your list). In the screen shot in figure 12.10, these values are listed in cells A8:A17.

To complete the data table, highlight the region of cells containing your list of values
and the sample calculations, in this case A7:C17. Activate the data ribbon, click on ”What
if analysis” and select Data Table on the menu and you will see a dialog box like the one
shown in figure 12.11.
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Figure 12.11: Dialog box for data tables.

Since your table is set up as a column-input table, in the ”Column input cell” box enter
a reference to the cell with the sample value of x used in your formulas. In this case, the
sample value is in B5, so enter that. When you click ”OK” the table will automatically
compute the result of substituting values into the formulas.

FINAL NOTE: If you select any cell of the data table, you will not see a calculation or a
value. Instead, you will see something like =TABLE(,B5). This is because the table is live,
so changing the cells in B1:C3 or the input cells in A8:A13 or the formulas themselves in B7
or C7 will instantly propagate through the table. To freeze the values, first select the table,
then copy it, and instead of pasting it, use ”Edit/ Paste Special”. Selecting ”Values” from
the list will copy just the resulting values and not the formulas.
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12.3 Homework

12.3.1 Mechanics and Techniques Problems

12.1. Answer the following questions for the regression output shown below.

Results of simple regression for Log(Cost)

Summary measures
Multiple R 0.8529
R-Square 0.7274
StErr of Est 0.0728

ANOVA table
Source df SS MS F p-value
Explained 1 0.4806 0.4806 90.7367 0.0000
Unexplained 34 0.1801 0.0053

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant 10.1592 0.0510 199.0448 0.0000 10.0555 10.2630
Units 0.0008 0.0001 9.5256 0.0000 0.0006 0.0010

1. What is the regression equation, as taken directly from the output?

2. What kind of model does this represent (Linear, Logarithmics, Exponential, Power,
Multiplicative)?

3. Convert the regression equation to standard form.

4. Use parameter analysis to interpret the model. Your answer should be a sentence of
the form ”As the explanatory variable (Variable Name) changes by (1% or 1 unit), the
response variable (Variable Name) changes by (amount or percent).”

12.2. Answer the following questions for the regression output shown below.
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Results of multiple regression for Cost

Summary measures
Multiple R 0.8931
R-Square 0.7977
Adj R-Square 0.7917
StErr of Est 2392.8335

ANOVA table
Source df SS MS F p-value
Explained 1 7.68E08 7.68E08 134.0471 0.0000
Unexplained 34 1.95E08 5.73E06

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant -63993.3047 9144.3428 -6.9981 0.0000 -82576.8329 -45409.7765
Log(Units) 16653.5527 1438.3953 11.5779 0.0000 13730.3838 19576.7217

1. What is the regression equation, as taken directly from the output?

2. What kind of model does this represent (Linear, Logarithmics, Exponential, Power,
Multiplicative)?

3. Convert the regression equation to standard form.

4. Use parameter analysis to interpret the model. Your answer should be a sentence of
the form ”As the explanatory variable (Variable Name) changes by (1% or 1 unit), the
response variable (Variable Name) changes by (amount or percent).”

12.3. Answer the following questions for the regression output shown below.
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Results of multiple regression for Log(Production)

Summary measures
Multiple R 0.9772
R-Square 0.9550
Adj R-Square 0.9507
StErr of Est 0.0598

ANOVA table
Source df SS MS F p-value
Explained 2 1.5922 0.7961 222.9220 0.0000
Unexplained 21 0.0750 0.0036

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant -0.0692 0.4351 -0.1591 0.8751 -0.9740 0.8355
Log(Labor) 0.7689 0.1448 5.3087 0.0000 0.4677 1.0701
Log(Capital) 0.2471 0.0640 3.8634 0.0009 0.1141 0.3801

1. What is the regression equation, as taken directly from the output?

2. What kind of model does this represent (Linear, Logarithmics, Exponential, Power,
Multiplicative)?

3. Convert the regression equation to standard form.

4. Use parameter analysis to interpret the model. Your answer should be a sentence of
the form ”As the explanatory variable (Variable Name) changes by (1% or 1 unit),
the response variable (Variable Name) changes by (amount or percent).” (Hint: You
will need to make two statements, one for each of the explanatory variables, for this
model.)

12.3.2 Application and Reasoning Problems

Coming soon
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12.3.3 Memo Problem

To: Analysis Staff
From: Top Modeler
Date: May 28, 2008
Re: Operating Costs for Insurance Company

Our clients’ management team would like us to compare a straight-forward
linear model with the multiplicative model that we came up with for our origi-
nal submission. They want to know if there is anything to be gained from their
basing their management decisions on the more complicated multiplicative model.
Or is a linear model almost as good? As we all know, simpler is better. But if
there is indeed something to be gained from using the more complicated multi-
plicative model then we should point out exactly what it is. Otherwise, we should
recommend that they use the simpler linear model.

Actually, this request should enable us to sharpen our analysis considerably.
For example, we can now compare the R2 and Se that we calculated for our mul-
tiplicative model to the R2 and Se generated by the linear model (we don’t have
to calculate these latter ourselves, however, since they are valid for linear models).
Also, we can compare the fitted vs. observed graphs and the residual vs. fits
graphs of the two models to see if we can detect a difference in goodness of fit or
accuracy.

Attachment: Data file ”C12 Insurance.XLS”

Here’s how you might go about dealing with this assignment:

1. Run a linear regression model, along with the two diagnostic graphs (fits, residuals).

2. Compute the cost predicted by the linear model with 100 home and 2000 auto policies
.

3. Do a marginal cost analysis for the linear model (if one more home policy is sold,
then the cost will increase by what dollar amount, holding the number of auto policies
at 2000; do a similar thing for auto policies).

4. Run your multiplicative model, generate your two diagnostic graphs and calculate your
own R2 and Se.

5. Compute the cost predicted by the multiplicative model at the 100 and 2000 levels.

6. Do a parameter cost analysis for the multiplicative model (if the number of home
policies increases by 1%, then the cost will increase by what %, holding the number of
auto polices at the current level; do this for levels of 100 home and 2000 auto policies,
then do the similar thing to analyze how costs change if the number of auto policies
changes).
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7. Do a nice summary presentation and analysis for your two models, including side-by-
side graphs and maybe a table or two showing R2, Se, the costs predicted by the two
models at the 100 and 2000 levels, and your marginal and parameter change analysis
- lay it all out for the client.

8. Make a summary statement as to which model you recommend for our client and why.
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