
Chapter 13

Nonlinear Multivariable Models1

Most problems in the real world involve many variables. So far, you have encountered two
types of models that have multiple independent variables: linear models and multiplicative
models. These are definitely the most commonly used multivariable models since they are
easier to interpret and can cover a variety of situations. But they do not cover all the
possibilities. Probably the next most commonly used model is a quadratic multivariable
model. This is the generalization of a parabola. This chapter will introduce you to this
model in several ways. First, you will learn how to create such models using regression and
interaction terms. Then you will learn how to graph and visualize some of these models.
This approach to graphing quadratics can then be used to graph other types of nonlinear
models.

• As a result of this chapter, students will learn
√

How to interpret certain quadratic models of two variables√
The different shapes that the graph of a function of two variables can assume√
How to simplify models with more than two variables when there are surrogate
relationships√
The difference between substitute and complementary commodities

• As a result of this chapter, students will be able to

√
Create a contour plot of a function of two variables√
Create a 3D surface plot of a function of two variables√
Use the discrimminant to determine the shape of a quadratic model

1 c©2011 Kris H. Green and W. Allen Emerson
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13.1 Models with Numerical Interaction Terms

In a previous chapter, we discussed building models using interaction terms. However, we
only dealt with two of the three types of interaction terms: the interaction of two categorical
variables and the interaction of categorical variable with a numerical variable. In this section,
we will talk about what happens when you allow two numerical variables to interact, and
what happens when you interact a variable with itself.

The second case is actually slightly easier to understand. Interacting a variable with itself
produces a new variable in which each observation is the square of one of the observations
of the base variable. Thus, a model built from a variable interacted with itself is a nonlinear
model, specifically a square or quadratic model. This gives us another way to think about
creating simple nonlinear models. Consider the data shown in the graph below, which has
indication of being a parabola. The independent variable is Units (of electricity) and the
dependent variable is Cost.

Figure 13.1: Electricity cost versus units used illustrating a nonlinear (possibly parabolic)
relationship.

We can easily produce a quadratic model, and we find it has the equation

Cost = 5792.80 + 98.35 · Units - 0.06*Units · Units.

This model is clearly a parabola. It opens downward (as the graph shows) since the
coefficient of the variable ”Units · Units” is negative. (Of course, we don’t expect there to
be a discount for using too much electricity, so a quadratic model is perhaps not the most
appropriate here, but you get the picture.)

The other situation - interacting two different numerical variables - is much harder to
visualize, since we are dealing with at least three dimensions (one for each of the base vari-
ables plus one for the dependent variable). In the next section, you will work on interpreting
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such models and getting some sort of picture of what they might look like. For now, though,
we concentrate on generating models of these two types, which are both quadratic models.

13.1.1 Definitions and Formulas

Interaction variable The product of two variables that constitutes a new variable and that
captures, if it proves to be significant, the combined effect of the two original variables.
Interaction terms can be created from any two variables. Most commonly, though, they
are created from interacting either two categorical variables, or a categorical variable
and a numerical variable (see chapter 10 for a discussion of such models).

Base Variable These are the original ”uninteracted” variables from which the interaction
terms were created.]

Quadratic model Any model made up of a combination of terms of the following forms:
Constants, Constant · Variable, Constant · Variable2, Constant · Var1 · Var2.

Term A term is any object added to other objects in a mathematical expression. For
example, in the function shown below, there are three terms: 3x, 2 and 5xy.

f(x, y) = 3x+ 2 + 5xy

Factor In a mathematical expression, a factor is one quantity (a variable or constant) that
is multiplied with other quantities to make a term. For example, in the function above,
the factors of the term 5xy are 5, x, and y. The factors of the term 3x are 3 and x.
The term ”2” has only one factor, itself.

Factoring Mathematical/algebraic process of breaking terms into factored form so that
several terms with similar factors can be grouped together. Often, this reveals hidden
details of the model and can aid interpretation.

Self Interaction An interaction term created by multiplying or interacting a base variable
with itself.

Joint Interaction An interaction term created by multiplying or interacting two different
base variables.

13.1.2 Worked Examples

Example 13.1. Models built with one variable and self-interaction
Consider data on the Federal minimum wage, shown in ”C13 MinWage.xls”. This data
shows the minimum wage (in dollars) at the end of each calendar year since 1950. Suppose
we would like to build a model for this data in order to make projections about future labor
costs for running a small company. Thus, we seek to explain the minimum wage, using the
year as the independent variable.
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One of the first things to note is that the years start in 1950 (when the minimum wage was
established). This means that we are looking at large values for the independent variable,
especially compared to the values of the minimum wage. It is helpful in situations like
this to shift the independent variable to start at zero. StatPro can easily transform (under
”StatPro/Data Utilities/Transform”) the Year data into a new variable ”Yr” representing
the number of years since 1950. (This means that ”Yr = 25” is the year 1950+25 = 1975.)
One can also simply enter the formula ”=A2 - 1950” in cell C2 and copy this down the
column. Graphing the minimum wage versus the year since 1950 produces a graph like the
following.

Figure 13.2: U.S. minimum wage versus years since 1950.

This graph clearly looks like part of a parabola, in spite of the high linear correlation.
This means that it would be appropriate to introduce the interaction variable ”Yr · Yr” and
perform a multiple regression to build the model. The results of this are shown below.

The model equation is

Minimum Wage = 0.5196 + 0.0476 · Yr + 0.0009 · Yr · Yr

We also see that the model has a coefficient of determination slightly worse than the
linear model. This is due to the exact features of the graph; in particular, there are many
years where the minimum wage does not change at all. The length of time the minimum
wage stays constant seems to increase with time (since 1950) which stretches the graph out
and makes the model slightly worse. A quadratic model, however, is clearly appropriate as
can be determined from looking at the diagnostic graphs.
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Results of simple regression for Price

Summary measures
Multiple R 0.9874
R-Square 0.9750
Adj R-Square 0.9740
StErr of Est 0.2539

ANOVA table
Source df SS MS F p-value
Explained 2 133.0347 66.5174 1031.6093 0.0000
Unexplained 53 3.4174 0.0645

Regression coefficients
Lower Upper

Coefficient Std Err t-value p-value limit limit
Constant 0.5196 0.0983 5.2874 0.0000 0.3225 0.7167
Yr 0.0476 0.0083 5.7618 0.0000 0.0310 0.0642
Yr*Yr 0.0009 0.0001 5.8760 0.0000 0.0006 0.0011

One thing that is not apparent from this model, however, is what it means. Using a
method called ”completing the square” we can rewrite the model as

Minimum Wage + 0.1098 = 0.0009(Yr + 26.4444)2

What this version of the model shows us is that the Minimum Wage plus about $0.11 is
modeled well by a scaled horizontally shifted power function! We can use the techniques of
the last chapter to make sense of this power function: for every 1% increase in the number
of years since 1950, the minimum wage should increase about 2% above its present level.
In 2006, which is 56 years after 1950, a 1% increase in the year would be 0.01*56 = 0.56
years = 6.72 months. The minimum wage predicted by the model in 2006 is about $6.01.
The interpretation of the model is that we would expect the minimum wage to increase 2%
(about $0.12) to $6.13 roughly six to seven months into the year 2006.

Example 13.2. Modeling with two interacting variables
Consider the data shown in file ”C13 Production.xls”. These data show the total number
of hours (label ”MachHrs”) the manufacturing machinery at your plant ran each month.
Also shown are the number of different production runs (”ProdRuns”) each month and the
overhead costs (”Overhead”) incurred each month. In a previous chapter, we built the linear
model shown below to explain these data.

Overhead = 3996.68 + 43.5364 · MachHrs + 883.6179 · ProdRuns

The model had a coefficient of determination of 0.8664 and a standard error of estimate of
$4,108.99, which was excellent compared to the standard deviation in overhead of $10,916.81.
In fact, it seemed the only problem with the model was the p-values for the constant term.
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This was 0.5492, well above our 0.05 threshold for a ”good” coefficient. So the question is
can we improve on this without significantly complicating the model?

If we create all the possible interaction terms in the independent variables (these are
MachHrs · MachHrs, ProdRuns · ProdRuns, and MachHrs · ProdRuns), we could create a
full regression model and then reduce it by eliminating those variables with high p-values.
Unfortunately, this produces a model with all p-values well above 0.05, leaving us no idea
which to eliminate first. We need a better approach. Rather than begin with all the variables
and eliminate, we will use stepwise regression to build the model up, one variable at a time.
The result of this stepwise regression is the model below.

Overhead = 35,778.20 + 0.6240 · MachHrs · ProdRuns + 21.2566 · MachHrs

This model has a coefficient of determination of 0.8628 and standard error of $4,163.77,
comparable to the linear model. However, the p-values for this model, including the constant
term, are zero to four decimal places! Thus, the model more accurately shows the influential
variables. But is this model too complex for interpretation?

One technique you may have encountered in previous mathematics classes is called fac-
toring. Notice that the last two terms in the model both contain the same factor, MachHrs.
Let’s write the model in a different order without changing the model and then group the
terms with similar factors together using parentheses, drawing that common factor out.

Overhead = 35,778.20 + (0.6240 · ProdRuns + 21.2566) · MachHrs

Now we notice that the model looks sort of linear. It’s like the variable is MachHrs, the
y-intercept is $35,778.20 and the ”slope” is 0.6240 · ProdRuns + 21.2566. Notice that since
this is not a constant slope, we cannot truly call it such, but it can be interpreted this way:
For each production run during the month, the cost of running the machinery for one hour
increases by $0.6240 from its base cost of $21.26 per hour. So even though the model is
quadratic and has an interaction term, it is still simple enough to interpret.

Example 13.3. Modeling with many interacting variables
In this example, we return to the commuter rail system introduced in an earlier chapter. If
you recall, Ms. Carrie Allover needed a model to predict the number of weekly riders (in
thousands of people) on her rail system based on the variables Price Per Ride, Income (repre-
senting average disposable income in the community), Parking Rate (for parking downtown
instead of taking the rail system) and Population (in thousands of people). Previously, we
developed a multilinear model for these data:

Weekly Riders = −173.1971− 139.3649 · Price per Ride + 0.7763 · Population

−0.0309 · Income + 131.0352 · Parking Rate

This model fit the data reasonably well, but we might ask whether we can do better, since
the p-value for the constant term was so high (0.4389). Let’s try a quadratic model. First,
we create the interaction variables. There are four independent variables, so that gives us
four variables representing self-interaction (Income · Income, Park · Park, Pop · Pop, Price
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· Price) and 4 · 3/2 = 6 interaction terms created from two different variables. You can see
the complete list of variables in ”C13 Rail System.xls”.

Clearly the full quadratic regression model will be complicated. Fortunately, many of the
p-values in the full model are well above 0.05. Rather than build our model by eliminated
variables one at a time, though, let’s retrace our steps and perform a stepwise regression.
We’ll submit ”Weekly Riders” as the response variable and we will submit all of the variables
(the four base variables, the four square terms and the six interaction terms) as possible
explanatory variables. StatPro will then build the model up from nothing adding in only the
relevant variables rather than having us work from the full model and eliminate variables.
The result is much simpler than we might have expected.

Weekly Riders = 596.491 + 0.0002 · Pop · Pop− 0.0864 · Price · Pop

+36.0244 · Park · Park− 0.0229 · Income

This model has a coefficient of determination of 0.9342 and standard error of 23.0119,
which are not very different from the linear model we started with, but we gain one significant
advantage: all the p-values are significant.

Still, our model has four independent variables involved. This makes it extremely difficult
to interpret. One way to do so would be to rewrite the model slightly by factoring the terms
involving Population.

Weekly Riders = 596.491 + Pop · (0.0002 · Pop− 0.0864 · Price)

+36.0244 · Park · Park− 0.0229 · Income

This leaves us with a model indicating that:

• For each $1 increase in disposable income, we expect 0.0229 thousand (about 23) fewer
riders each week.

• Population has a generally positive effect on ridership, but its effect is mitigated by the
price per ride; for each $1 increase in ticket price, we expect the effect of population
to be decreased by 0.0864 thousand riders per thousand people in the population.

Obviously, this model is complicated. Interpreting it is still difficult. However, we can
reduce this model to a quadratic model of two variables by taking advantage of some of the
natural correlations in the data. Looking at the correlations (table 13.2) shows us that there
are strong linear relationships between Income and Parking Rates and between Price per
Ride and Parking Rates. These relationships are shown in table 13.3 below.

Weekly Riders Price per Ride Population Income Parking Rate
Weekly Riders 1.000
Price per Ride -0.804 1.000
Population 0.933 -0.728 1.000
Income -0.810 0.961 -0.751 1.000
Parking Rate -0.698 0.958 -0.645 0.970 1.000
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Model Correlation R2 Se

Income = 2046.8727 + 3191.5617 · Park 0.970 0.9408 505.1306
Price = -0.0929 + 0.5672 · Park 0.958 0.9176 0.1072

In the equation above, we substitute these relationships (replace Income with 2046.8727
+ 3191.5617 · Park and replace Price with -0.0929 + 0.5672 · Park) and eliminate those two
variables (which are surrogate variables for Parking Rate, apparently). The reduced model
looks like

Weekly Riders = 596.491 + 0.0002 · Pop · Pop− 0.0864 · (−0.0929 + 0.5672 · Park) · Pop

+36.0244 · Park · Park− 0.0229(2046.8727 + 3191.5617 · Park).

Simplified, this model becomes

Weekly Riders = 549.618 + 0.0002 · Pop · Pop + 0.00799 · Pop− 0.0490 · Park · Pop

+36.0244 · Park · Park− 73.0868 · Park.

This two-variable quadratic model is simpler in many ways than the original nonlinear
model. However, we will leave interpretation of this model to the next section, when we
learn how to picture this model as a surface in three-dimensions.
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13.1.3 Exploration 13A: Revenue and Demand Functions

File ”C13 Exploration A.xls” contains weekly sales and revenue information for two different
companies. The first worksheet, labeled ”Company 1” shows the quantities of two comple-
mentary commodities that are sold by this company. These items are X and Y. The second
sheet contains data on two substitute commodities sold by ”Company 2”.

1. Formulate a quadratic regression model for Company 1’s revenue as a function of the
quantity of each item that is produced and sold.

2. Formulate a quadratic regression model for Company 2’s revenue as a function of the
quantity of each item that is produced and sold.

You should now have two revenue functions that look something like this:

R(q1, q2) = Aq2
1 +Bq2

2 + Cq1q2 +Dq1 + Eq2 + F

Where the capital letters are constants and variables q1 and q2 represent the quantity
of goods of each type.

3. Explain why, in the revenue formula above, you would expect F, the constant term, to
be zero. Do your regression models match this prediction?

We are going to use these revenue functions to determine the demand functions for the
products in each case. Recall that the demand function gives the unit price that the
market will pay for something, given the supply (in this case the quantities q1 and q2)
of the item(s) being sold. To find the demand functions, we need to write the revenue
function in the form

R(q1, q2) = q1p1 + q2p2

In this formula, the p1 and p2 are the unit prices. We will assume that these are both
linear functions of the two quantities.

4. What does it mean in the last sentence when it says that p1 and p2 are a linear function
of the quantities? Give a sample function that could represent p1 or p2.

5. Try to find the demand functions for each situation. You can do this by (a) factoring
the regression models you have formulated above and (b) assuming that the term
with the coefficient C in the revenue formula is split equally between the two demand
functions.

6. Use your demand functions to fill in the tables below, showing the estimated prices
customers would pay at each company for different supplies of the two goods.

Company 1 Company 2
q1 q2 p1 p2 q1 q2 p1 p2

1000 1000 2000 2500
1100 1000 2100 2500
1000 1100 2000 2600
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7. Based on your demand functions (you should now have four: two for each scenario)
and your data in the tables above what do you think are meant by the terms ”com-
plementary commodities” and ”substitute commodities”?
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13.1.4 How To Guide

Interacting a variable with itself

StatPro will let you create a new interaction variable from two different variables; however,
it will not allow you to interact a variable with itself. This is easy to do manually with
a small formula, though. First, you create a new column for the interaction variable. To
remind yourself what it represents, you might call it ”Variable2” where ”variable” is replaced
with the name of the base variable. Second, you enter a formula in the first cell of the new
column that computes the product of the variable with itself. Finally, you copy this formula
down the column.

In the spreadsheet shown below (the original file without the interaction terms is ”C13
Rail System.xls”) you see that we have added a column for the new variable ”Park2” which
will be the interaction of the variable ParkingRate with itself (column G). Next, in cell G4
we entered =F4*F4 and then copied this down column G by double-clicking on the fill handle
for cell G4.

Figure 13.3: Numerical-on-numerical interaction terms in the rail system data.

Pitfalls of numerical-numerical interaction variables

When creating models with numerical-numerical interaction variables, you are much more
likely to encounter an error. The most common is the ”multiple colinearity” error. In well-
designed and collected data sets with several numerical variables, it is quite likely that there
are many hidden relationships among the different variables. For example, if you attempt
to predict car maintenance costs based on the two variables of age and mileage, we expect
that older cars also have more mileage. Thus, the two independent variables are not truly
independent.

Using mixed cell references to compute a table of function values

To compute a table of values for a function of two variables, say f(x, y), it is very efficient
to use mixed cell references. These are cell references with either the column or the row
fixed (by placing a $ in front of it) but not both of them (that would be an absolute cell
reference).

For example, to make a graph of z = 4 + 2x − 3y + x2 + 2y2 − 5xy, we first set up the
spreadsheet with values of x across the first row (skipping the first cell) and values of y down
the first column (skipping the first cell). So if we wanted to graph this function for values
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of x from -5 to 5 and values of y from -10 to 20, we might set the spreadsheet up as shown
(see ”C13 HowTo.xls” for the data and the sample graph; the labels for the ”X Values” and
”Y Values” were done using the ”merge and center” feature). Note that the x values run
left to right, and the y values run top to bottom. Also note that we have left the first cell
blank; this is important in helping Excel ”guess correctly” when it formats your graph (See
”Making a 3D surface plot” in the next section).

Figure 13.4: Table of values for a function of two variables.

The next step is to enter the formula, paying careful attention to the types of cell refer-
ences we need. Every time we refer to the x value in our formula, we need to fix the row (like
C$2 in the formula highlighted above), since the x values are always in row 2, but will be in
different columns depending on the specific x value we want to use. The y values are always
in column B, so when we refer to a cell with a y value in it, we need to freeze the column
(like $B3 in the formula shown above). The full formula (in cell C3) is shown below to make
it easier to read. Of course, we could have set up cells with parameters for the function
instead of typing the 4, 2, -3, etc. This would have allowed us to easily see how changing
these numbers changes the shape of the graph, but it would have made the formula harder
to read for this example. In general, you should always use parameters, rather than ”hard
coding” the numbers into the formula.

B2 = 4+2*C$2-3*$B3+C$22̂+2*$B32̂-5*C$2*$B3

Once these references are correct, we copy the formula to all the other cells in the table,
as shown. The result shows us the value of z for a given value of x (the column) and y (the
row). Thus, when x = −2 and y = 10, we find that z = 274. This procedure will work with
any type of function of two variables, linear or nonlinear.
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13.2 Interpreting Quadratic Models in Several Vari-

ables

When dealing with multivariable models, there are, literally, an infinite number of ways to
explore them, depending on what kind of graph you want, which part of the model you want
to graph, whether you would prefer looking at the data in a table of numbers, or a host of
other possible choices. It helps to have some basic skills and options for visualizing functions
with two independent variables. As we’ll see, graphing them requires three dimensions, one
for each independent variable and one for the dependent variable. Thus, if you want to graph
a model with more than two independent variables, you need some mighty special paper!

Obviously, one way to gain an understanding of how the function behaves is to make
a table of data. You’ve seen such tables before for functions of several variables, you just
didn’t realize it. One very common example relates to the weather. You’ve heard of wind
chill probably. This is a measure of how cold the air feels, based not only on the actual
temperature, but also on the wind speed. To use such a table (like the one below) you
simply locate the intersection of the wind speed (down the left column) and air temperature
(across the top row) to find the wind chill. Such a process defines a function of two variables.
If we let W stand for the wind chill, S for wind speed and T for air temperature, then we
could write

W = W (S, T )

to represent the relationship; this emphasizes that W is a function of S and T . For
example, W (25, 10) = −29 indicating that a 25 mph wind on a 10 degree day makes the air
feel like it is actually 29 degrees below zero!

Wind Ambient Air Temperature
Speed (degrees Fahrenheit)
(mph) 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45

5 33 27 21 16 12 7 1 -6 -11 -15 -20 -26 -31 -35 -41 -47 -54
10 21 16 9 2 -2 -9 -15 -22 -27 -31 -38 -45 -52 -58 -64 -70 -77
15 16 11 1 -6 -11 -18 -25 -33 -40 -45 -51 -60 -65 -70 -78 -85 -90
20 12 3 -4 -9 -17 -24 -32 -40 -46 -52 -60 -68 -76 -81 -88 -96 -103
25 7 0 -7 -15 -22 -29 -37 -45 -52 -58 -67 -75 -83 -89 -96 -104 -112
30 5 -2 -11 -18 -26 -33 -41 -49 -56 -63 -70 -78 -87 -94 -101 -109 -117
35 3 -4 -13 -20 -27 -35 -43 -52 -60 -67 -72 -83 -90 -98 -105 -113 -123
40 1 -4 -15 -22 -29 -36 -45 -54 -62 -69 -76 -87 -94 -101 -107 -116 -128

But, making tables of the data from a function is only one way to study its behavior.
And, the table of numbers may be difficult to read and interpret. In addition, the spacing of
the values in the table may hide some important features. For example, the wind chill table
makes it appear that no matter what, if the wind speed increases, the air feels colder (wind
chill is lower). But what if between 20 and 25 mph, it actually gets a little warmer for some
reason? Our table would not show this.

So, another common tool for studying such functions is to create 3D surface plots of
them. If we copy the table above into Excel and create such a plot, we get a figure like the
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Figure 13.5: 3D plot of wind chill versus air temperature and wind speed.

one below. We can adjust the perspective of the graph, but otherwise, it has many of the
same features as all the scatterplots we’ve used before.

In this section, we will use this graphical tool to help us understand the different types
of quadratic models that we may get from applying the techniques of the previous section.
In general, we will be dealing with models of the form

f(x1, x2) = E + A1x1 + A2x2 +B1x
2
1 +B2x

2
2 + Cx1x2

And will want to know what different shapes the graphs of such functions may take. For-
tunately, there are only a few possibilities, and we will learn some ways of quickly classifying
any function as being one of these types (either a bowl-shaped surface, a hill-shaped surface,
or a saddle-shaped surface)

While it may seem restrictive to study such as specific class of functions, it turns out
that there are several good reasons for it. The first is that it arises easily in modeling, as the
techniques of the last section showed. The second is that if we zoom on the surface of any
random function of two variables, on a small enough scale it looks like a quadratic. Thus,
studying these objects gives us a lot of tools for understanding more complex objects.

13.2.1 Definitions and Formulas

Dimensions For each variable (independent or dependent) in a model, you need one di-
mension in order to create a graph of the model. Thus, a model like y = f(x) needs
two dimensions, one for y and one for x. A model like the general quadratic below
needs three dimensions for its graph.
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Surface Plot A graphic representation of a function of one variable (two dimensions) is a
scatterplot. Creating a similar type of graph for a function of two variables requires
three dimensions. Each point has three coordinates, and the height of the point above
the xy-plane is the value of the function. When the points are connected together,
they form a surface in three dimensions.

General Quadratic Model The general quadratic model we will use in this text is

f(x1, x2) = E + A1x1 + A2x2 +B1x
2
1 +B2x

2
2 + Cx1x2

In this, we assume that at least one of the B coefficients is non-zero. Other texts may
refer to the model in slightly different terms, but the important things to note are that
(1) this is a polynomial model (in two variables) and (2) the degree of each term (sum
of the powers of each variable) is either 0, 1 or 2. For example, the terms with a B
coefficient all have one variable raised to the second power and the other raised to the
zeroth power, so they are degree 2. The cross term (the term with the C coefficient
that involves both independent variables) has both variables raised to the first power,
so its degree is 1 + 1 = 2 as well.

Discriminant There are several mathematical objects that go by the name ”discriminant”.
Each is used to discriminate between several alternatives. In this case, we are referring
to a quantity that can be derived from the formula for the general quadratic that helps
decide whether the graph will look like a bowl, a hill or a saddle. Using the symbols
above, the discriminant is the quantity

D = 4B1B2 − C2

The shape of the graph (as we will see in the examples), depends on this quantity in
the following ways:

1. If D > 0 and B1 > 0, then the graph will look like a bowl.

2. If D > 0 and B1 < 0, then the graph will look like a hill.

3. If D < 0, then the graph will look like a saddle.

4. If D = 0, then the discriminant is not helpful.

There are two other possible shapes for the graph, which occur if the coefficients in
front of all instances of one variable are zero. In that case, the graph looks like either
a trough (if the remaining B coefficient is positive) or a speed bump (if the coefficient
is negative).

Depending on your viewpoint and the exact values of your graph, you may not be able
to see it has a particular shape, though (see example 5 (page 394)).
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13.2.2 Worked Examples

Example 13.4. Looking at a multi-linear function
Recall the model from the previous section that represented our best, linear efforts to model
the overhead based on the machine hours and production runs:

Overhead = 3996.68 + 43.5364 · MachHrs + 883.6179 · ProdRuns

File ”C13 Production2.xls” shows a table of values for this function, calculated over a
domain similar to that present in the data. Below is a 3D surface plot of these data, showing
the linear structure.

Figure 13.6: Linear two-variable model of overhead versus Production Runs and Machine
Hours.

Notice that this graph appears to be a flat plane, like a piece of paper tilted at an angle.
Any linear function of two variables has such a graph.

Example 13.5. Looking at a quadratic function of two variables
Here is one possible graph for a quadratic function of two variables. This is based on the
quadratic model of the overhead costs found in ”C13 Production2.xls” in the worksheet
labeled ”Example 13B2”. It uses the model shown below.

Overhead = 35,778.20 + 0.6240 · MachHrs · ProdRuns + 21.2566 · MachHrs

Notice that the formula in cell C5 uses mixed cell references (see the ”How To Guide” for
details) in order to calculate the overhead from a given number of machine hours (in column
B) and a given number of production runs (row 5).
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C5 = 35778.2 + 0.624*$B5*C$4 + 21.2566*$B5

The graph of this model is shown below.

Figure 13.7: Quadratic two-variable model of overhead versus Production Runs and Machine
Hours.

Notice that this graph also appears, at first glance, to be linear - like a plane. However,
the contour lines on the surface between the different colored regions are curved, indicating
that this is truly a nonlinear model. The reason it doesn’t look quadratic is because of
the particular set of values of MachHrs and ProdRuns we have used to graph the function.
When we graph it over a larger region, we can clearly see the warped ”saddle” shape of the
surface become apparent. Of course, we could never have negative values of machine hours
or production runs in a given month, so the actual data will never show this. Thus, we see
that even when the data may be best represented by a nonlinear model, it may not be clear
from the graph.

Also note that in the notation given in the ”Definitions and Formulas” for the discrim-
inant, we have B1 = B2 = 0 and C = 0.6240. This means that the discriminant, D, is
-0.62402, which is less than zero, confirming that we should see a saddle in the graph.

For the sake of completeness, we view the graph of overhead from above (graphed on the
region with all independent variables positive). Such a graph is called a contour plot and
shows curves (called contours) that separate regions based on their coordinate in the third
dimension. Notice that all of the contours are curved, another indication that the underlying
graph is nonlinear. In fact, it can be shown that these curves are hyperbolas, a type of object
closely related to parabolas.

Example 13.6. Another quadratic surface
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Figure 13.8: Quadratic two-variable model of overhead versus Production Runs and Machine
Hours. Note that this is graphed over a different domain than in figure 13.7 emphasizing the
nonlinear nature of the graph.

Let’s look at a graph of the surface representing the quadratic Weekly Riders model from
example 3 (page 384). This model, after reducing it to two variables, became

Weekly Riders = 549.618 + 0.0002 · Pop ∗ Pop + 0.00799 · Pop− 0.0490 · Park · Pop

+36.0244 · Park · Park− 73.0868 · Park

When graphed over the region with Parking Rates from $0.50 to $2.50 and Population
between 1,000 thousand people and 2,000 thousand people, we appear to see a linear model.
But a calculation of D gives D = 0.0264 which is positive. Since the coefficients of the
squared terms are both positive, this seems to indicate that we should see a bowl-shaped
surface. How are we to reconcile the calculation with the graph?

This is always part of the problem in graphing and interpreting nonlinear models, espe-
cially those of several variables: such functions tend to have large domains, and tend to look
very different at different locations in the domain. To emphasize this, we look at the graph
on a slightly expanded domain where the shape is more evident.

Example 13.7. Multiplicative models
As a final example, we will look at a graph of one of the other multivariable, nonlinear
models we have encountered, the multiplicative model. The model below is a Cobb-Douglas
production model. P represents the total production of the economy, L represents the units
of labor available and K represents the units of capital invested. We met such models in the
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Figure 13.9: Contour view of the quadratic model of overhead. Note that the contours (or
level curves) are not straight lines, as in a linear model, but are curved.

last chapter and applied parameter analysis to their interpretation. But what do they look
like?

P = 0.939037L0.7689K0.2471

As you can see from the graph below, when we plot the production for reasonable values of
the labor and capital (both positive) the contours look like those of a saddle-shaped surface,
but the graph does not look like a saddle. The graph shows that if either of the inputs is
zero (capital or labor) the production is zero. It also shows that if you increase either input
(or both) you continue to get more output.
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Figure 13.10: Quadratic model of weekly riders versus population and parking rates.

Figure 13.11: Different view of the graph in 13.10 showing the bowl-shape.
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Figure 13.12: 3D plot of a Cobb-Douglas model, illustrating the nonlinear nature of the
model.
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13.2.3 Exploration 13B: Exploring Quadratic Models

In this exploration, you will get a chance to connect the different shapes of the quadratic
graphs to the values of the coefficients and see some realistic examples where these different
shaped graphs might occur. Consider the revenue generated from selling two different prod-
ucts. Since revenue is the quantity sold (q1 will be the quantity of item 1 sold; likewise for
item 2) times the unit price of the item (p1 will be the unit price of item 1) we can reasonably
assume that the revenue function looks something like this:

R(q1, q2) = q1p1 + q2p2

Depending on the particular goods, we might have the prices of each item related to
the quantity of both items sold. Two common situations in which this occurs are when the
items are either substitute commodities, which means that people buy one or the other, but
not both, or when they items are complementary commodities, where people who buy one
item tend to buy the other. For example, a car company might sell one model of SUV and
one model of sedan; most people buy one or the other. Thus, sedans and SUVs tend to be
substitute commodities. On the other hand, since all cars need tires, we expect increased
car sales to result in increased tire sales; cars and tires are complementary commodities.

We could get these relationships for the prices from the demand functions for the two
items. For now, we’ll assume that the demands are linear in the prices so that:

p1 = c1 + a1q1 + b1q2 and p2 = c2 + a2q1 + b2q2

In these expressions, the coefficients a, b, and c are all constants. The exact values of
these constants depend on the relationship between the two commodities being sold.

Open the file ”C13 Revenue Exploration.xls” to explore how these coefficients influence
the shape of the graph and the decisions that you might make in order to achieve the best
possible revenue. When you open the file, depending on your computer’s security settings,
you may need to click on the ”Enable Macros” button in order to make the exploration
active. If all is working properly, you should have two slider bars in the upper right corner
and moving these around should change the shape of the graph; if it doesn’t see the ”How
To Guide” below for details on adjusting the computer’s security settings.

It is important to note that there are, potentially, six constants in the expression that
you could change. We have rigged the exploration file, though, so that you can control just
two of these with the slider bars, and the other four will change in a particular way. This
makes it easier for you to see what is happening on the graph and allows you to focus your
attention on the important features. The coefficients that you can change with the sliders
are in cells C3 and D4: these represent the quantities a1 and b1 in the expressions above for
the demand. You will also notice that the discriminant is calculated for you, in cell G1, to
help you make some sense of what you are seeing.

Part A. First, move the sliders around to get a feel for how they interact and produce
different shapes of the surface. Then concentrate on specific values of the coefficients that
produce the different shapes. Finally, for one example of each shape, explain what the
values of the coefficients mean in terms of the relationship between the two goods under
investigation.
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Interpretation of the Graphs

Now, focus on one of your graphs. The method we will use to interpret the graph is referred
to as the ”method of sections”. The idea is that we fix the value of one of the independent
variables; for example, we could let q2 = 500. Now we imagine moving across the surface of
the graph, always keeping q2 fixed, but letting the other variable, q1 increase. The interpre-
tation follows by thinking about what happens to the dependent variable as the free variable
increases at a fixed value of the other variable (the ”sectioning variable”). For example, if
you push the two sliders all the way to the right, so that cells J1 and J2 show the value of
1000, you have a graph that looks like a hill. Now, imagine setting q2 = 500 and exploring
the surface along this path by letting q1 increase from 0 to 300. You might describe this
exploration in the following way:

Along the section q2 = 500, the total revenue seems to be increasing until the point where
q1 is about 200. Up the that point, the revenue is increasing, but at a decreasing rate (the
hill is concave down). After q1 = 200, the revenue begins to decrease as q1 increases.

Similar statements can be made along any section (fixed value of one of the variables).
This is very much like our interpretations of multivariable models that we have used before.
The main differences are that (1) this is a graphical method and (2) we are referring to this
as ”sectioning in q2” rather than ”controlling for q2” as we did in the algebraic versions.

Part B. Now, for each of the graphs you focused on in part A, describe several sections of
the graph. Be sure to section the graph in both of the variables. You may want to change the
viewing angle for the 3D graphs to help you visualize the surface better for some sectionings
(See the How To guide for this).
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13.2.4 How To Guide

Making a 3D surface plot

Once you have a table of values for a function of two variables, whether generated from
actual data or from a formula (see above), it is relatively easy to create a surface plot. First
highlight all of the table (in file ”C13 HowTo.xls”, we would highlight B2:M18). Notice that
the first cell, the empty one, is included in this. Then from the insert ribbon, select ”Other
charts” and choose the first of the surface chart types.

Figure 13.13: Inserting a 3D surface graph in Excel.

Adjusting security settings for macros in Excel

If you open a file with macros (for example, the sliders in exploration 13B) you will see one
of three things happen. Either:

1. You will be asked if you want the macros to be active (medium security),

2. The macros will be automatically active and you will see nothing (low security), or

3. The macros will automatically be disabled (high security).

Macros are simply collections of instructions (a small program, basically) that have been
connected to make them easier to run together, rather than having to repeat all of the
commands each time you want to reproduce that set of actions. Macros are a common way
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to distribute computer viruses, so many recommend that you think carefully about enabling
them all the time; we prefer to use medium security, so that we are asked before macros are
enabled in a particular file.

To adjust your security settings, open the Excel Options menu by clicking on the Office
button in the upper left corner of the Excel window and clicking on ”Excel options” at the
bottom. In the dialog box, click on the Trust Center (see figure 13.14) and click the ”Trust
center settings” button in the lower right corner. Select the level of security you wish to have
from the screen in figure 13.15, then click ”OK” and ”OK” again to apply these settings.

Figure 13.14: The Excel options menu, showing the trust center active.
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Figure 13.15: Adjusting the macro settings in the trust center.
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13.3 Homework

13.3.1 Mechanics and Techniques Problems

13.1. Answer each of the following questions, given the function of two variables: f(x, y) =
8xy − 3x2 + 2y2.

1. Find the value of the function when x = 2 and y = 1.

2. Determine a value of y so that when x = 10, the function is equal to 124. You may use
algebra, Goal Seek or some other method to find the answer, but explain your solution
method.

3. Create a graph of the function of one variable g(x) where g(x) = f(x, 3).

13.2. Using the discrimminant identify the shape of the 3D surface plot of each function
below. Describe the shape as being either: a bowl, a hill, a saddle, or impossible to tell.

1. f(x, y) = 2x2 − 3xy + y2 + 4x− 5

2. g(x, y) = 3x2 − 2xy + y2 + 4y − 5

3. h(x, y) = −3x2 + 2xy − y2 + 4y − 5x+ 1

4. k(x, y) = −0.3x2 + 0.2xy − 0.1y2 + 4y − 5x+ 1

13.3. Get Bent, Inc. sells assembled and unassembled recumbent bicycles. The estimated
quantities demanded each year for the assembled and unassembled bikes are x and y units
when the corresponding unit prices (in dollars) are

p = 2000− 1

5
x− 1

10
y

q = 1600− 1

10
x− 1

4
y

1. Find the annual total revenue function, R(x, y).

2. Find the approximate domain of the revenue function. That is, find the set of values
of x and y such that the unit prices are all positive.

3. Create a 3D surface plot of the revenue function for all points (x, y) in the domain.

4. Create a 3D contour plot of the revenue function for all points (x, y) in the domain.
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13.4. The revenue function below was developed as a model for the revenue data ”Shaken
and Stirred” collected regarding its sales of gin (x) and vodka (y). The sales quantities
of each are measured in liters. The company would like to know if the revenue function
supports the notion that their products are complementary commodities.

R(x, y) =

1. Factor the expression to put it into the form below. Assume that the mixed term (the
xy term) splits equally into the two demand functions.

2. From your factored revenue function, identify the demand functions for gin (x) and
vodka (y) sold by Shaken and Stirred.

3. Analyze your demand functions and explain whether the products are complementary
commodities or substitute commodities.

13.5. The contour diagram below shows the total revenue from selling two different products.

1. Give at least four sets of production pairs (q1, q2) such that the revenue is positive.

2. Give at least four sets of production pairs (q1, q2) such that the revenue is greater than
200,000.

Figure 13.16: Revenue versus quantity of two products being sold, problem 5.
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13.3.2 Application and Reasoning Problems

13.6. The graphs below show contour plots of the demand function for one product out of
a pair of products sold by the same company. In each graph, the demand function plots the
unit price when x and y units of the two products are demanded. Which company is selling
two complementary commodities? Which is selling two substitute commodities? Explain
your answer.

Figure 13.17: Contour plot of demand function for Company A in problem 6.

13.7. Metro Area Trucking has been gathering data regarding a different approach to pre-
dicting maintenance costs of its trucking fleet. There is a considerable growing body of
research suggesting than uneven tire tread wear is related to maintenance costs for a variety
of reasons including worn front end parts, worn or weak suspension, and even the vibrations
of a roughly running engine. The surface of the roadway has been shown to affect uneven
tire wear, which might relate to maintenance costs even apart from tire wear, and uneven
tire wear is a direct contributor to high gasoline costs. Metro has developed an index for
measuring uneven tire wear. Every three months the treads of the four tires of a van are each
measured in three places by a digital gauge to the nearest 64th of an inch. The standard
deviation of the three measurements taken on each tire is calculated and then scaled from 1
to 100 in whole numbers for easy reading. This is called the tire’s tread index. The more
uneven a tire is, the larger its standard deviation, and the higher its tread index. The largest
index measured from the four tires on the van is recorded. The idea is that this index, which
is a measure of the driving conditions to which the truck is subjected, interacted with the
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Figure 13.18: Contour plot of demand function for Company B in problem 6.

number of miles the truck is driven, might very well be a good predictor of maintenance
cost.

1. From the data in C13 Truck Data.xls, build a model with interaction terms (self and
joint)

2. Discuss the goodness of fit of your model

3. Interpret the model.

13.8. Consider the following model to explain the number of tickets sold each week in a large
metro public transportation system:

Riders = 1486.7960 + 0.0681 · Income− 29.3 · TicketPrice− 2.3324 ·GasPrice ·GasPrice

+1.4625 · TicketPrice · Income + 13.8049 · TicketPrice · TicketPrice

In this model, the variable ”Income” represents average weekly disposable income for
a family of four in the greater metropolitan area (in dollars), ”TicketPrice” represents the
price of a ticket on the transit system (in dollars), and ”Gas Price” is the median price for
a gallon of regular unleaded gas (in dollars).

But the model, with three variables, is too complicated for explaining to the city council
at the upcoming meeting. You have noticed that, within the time span that this model was
based upon, you found that
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Income = 260.00− 3.1 · TicketPrice

Use this information to find a simpler way to express the model and interpret the sim-
plified model both algebraically and graphically.

13.9. For a fixed amount of principal, A (in dollars), the monthly payment ($) for a loan of
t years at a fixed APR of r is given by the formula below.

P = f(A; r, t) =
Ar

12
[
1−

(
1 + r

12

)−12t
]

1. Create a 3D surface plot for the monthly payment of such an amortized loan for a
reasonable domain of t and r. Use A = $100,000 as the principal for the loan.

2. Using your graph, what happens to the monthly payments as the interest rate r in-
creases, but the term of the loan (t) stays fixed? Does it depend on the value of t, or
is the effect independent of t? Explain.

3. Using your graph, what happens to the monthly payments as the term of the loan t
increases, but the interest rate (r) stays fixed? Does it depend on the value of r, or is
the effect independent of r? Explain.

13.10. Home mortgage rates are designed so that the amount of principal and amount of
interest in each payment varies over the life of the loan, but the monthly payment remains
fixed. For a loan of A dollars and a term of t years, the total amount of principal paid by
the end of month i of the loan is given by the formula below.

B = f(A, t; r, i) = A


(
1 + r

12

)i
− 1(

1 + r
12

)12t
− 1


1. Suppose you borrow $100,000 for a home on a 30-year loan at 6.25% APR. How much

will you have left to pay after 1 year (12 months)? After 5 years (60 months)? After
15 years (180 months)?

2. Suppose you borrow $125,000 for a home on a 30-year loan. Create a 3D plot showing
the amount of principal remaining after month i at an interest rate of r. Use values of
r between 2% and 10%, in intervals of 0.25%. Make sure your graph covers the entire
period of the loan.

3. From your graph, what can you infer about the amount of principal in each monthly
payment when you are at the beginning of the load repayment? At the end?
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13.3.3 Memo Problem

To: Analysis Staff
From: Project Management Director
Date: May 29, 2008
Re: Revenue Projections at Dream Grills

One of our smaller clients, Dream Grills, sells its one product, the Dream
Grill 5000, in two forms: assembled and unassembled. Based on economics theories
about substitute commodities, they have been making projections and analyses for
their business plan based on the following models of their revenue.

R(QA, QU) = QAPA +QUPU

PA = 462− 0.1QU − 0.35QA

PU = 372− 0.20QA − 0.16QU

In these models, the P and Q refer to the price and the quantity of the two
items; the subscripts A and the U refer to the ”assembled” and ”unassembled”
versions of the product. Thus, the quantity PA is the price of the assembled grills,
based on the quantities of each version that are sold.

The company has collected revenue and quantity sales data for the last 50
weeks. Formulate a regression model for the revenue and compare the two models,
yours and theirs, using graphical and analytical tools you feel are appropriate to
illustrate the differences.

Attachments: C13 Revenue.xls


