Data Analysis Through Modeling: Thinking and Writing in Context

Kris Green and Allen Emerson

Fall 2011 Edition¹

 $^1 @2011$ Kris H. Green and W. Allen Emerson

About this text

Data Analysis Through Modeling is a one-semester data analysis and calculus text that can be used as part of a one-, two- or three semester sequence of mathematics courses usually required of business and management undergraduate majors. We believe the following features distinguish this text from other texts in the curriculum:

- \Rightarrow Data-driven, open-ended problems
- \Rightarrow Extensive use of spreadsheets throughout the text as more than just a calculator
- \Rightarrow Key problems framed as realistic business memos
- ⇒ Follows recommendations of MAA's Curriculum Foundations Project CRAFTY report for business and management

The increasingly information-driven demands of business in the 21st century require a different emphasis in the quantitative skills and ways of thinking than traditional mathematics courses have provided in the education of managers. This emphasis has to do with becoming comfortable in the world of data and mathematical models, being able to use technology as a tool through which to think, and expressing one's thinking effectively in writing.

The key, we believe, is data analysis through modeling. Data analysis for us means "What can we find out about this data set relevant to our problem?" Models for us are such things as: averages, boxplots, histograms, single- and multivariable regression equations, both linear and nonlinear. These models are proxies for data that are too complex to understand any other way. We think of calculus as a way of analyzing certain kinds of models, which in turn, reveals something about underlying data structures. Our treatment of calculus emphasizes basic concepts, such as rates of change, constrained optimization, and interpretations of area under a graph, and their applications to business problems. We use spreadsheets to develop numerical methods for both differentiation and integration while deemphasizing symbolic manipulation. We use Excel's Solver routine instead of the simplex method to solve linear programming problems. Using Solver has the advantage that we can also solve nonlinear programs.

As we developed this text, we found the introduction of spreadsheet technology for analysis of data not only changed our teaching approach and the content of the course, but it caused us to modify our assignments as well. We found that we simply could not get the quality and depth of understanding we desired from our students by using conventional exercises. We found that students have to explain their thinking and make explicit their assumptions and inferences. In short, we had to supplement our more conventional exercises with memoranda problems with accompanying data files that students respond to in an appropriate business format that are, in turn, read by their supervisor. Further, we find that students learn more by having a chance to revise their work based on instructor/supervisor feedback. All of which should give an indication as to why the book is subtitled "Thinking and Writing in Context."

Although the text has a unit of descriptive statistics and develops regression all the way through multivariable regression with interaction terms, Data Analysis Through Modeling is not a statistics text. Most one-semester introductory statistics courses do not treat regression at the level presented in this text. Moreover, most introductory statistics texts do not give the same emphasis to descriptive statistics that this text does, which is to use these relatively simple concepts for rather deep analysis. *Data Analysis Through Modeling* fits well with an introductory statistics course that primarily deals with probability and hypothesis testing.

How this text fits into the curriculum

We recommend the following tracks for a three-credit-hour, semester-long course using *Data* Analysis Through Modeling:

- For students not having a prior statistics course: Chapters 1-9, 11-12 [11 chapters]. This course would not contain calculus and would be the first in either a two- or three semester sequence: 1) data analysis and statistics or 2) data analysis, statistics, and calculus. In our experience, students then do quite well in the follow-up statistics course after their experience with our approach to data analysis.
- With a statistics prerequisite: Chapters 1-3, 7-9, 11-17 [12 chapters]. This course would contain calculus and constitute the second course in a two-semester sequence containing probability and hypothesis testing, data analysis, and calculus.

The basic concepts of calculus are emphasized and applied to business problems involving marginal analysis, optimization and area under a curve. As recommended by CRAFTY, formal techniques of symbolic manipulation are kept to a minimum, whereas spreadsheets are used extensively not only for finding numerical solutions but, equally important, for the development of the basic concepts of calculus themselves.

The Technology Used in this Text

In addition to problem solving in the dynamic environment of spreadsheets, students will have the opportunity to learn about and use the following Excel tools: pivot tables, sorting, stacking and unstacking data, basic statistical functions, frequency tables, sumproduct, building boxplots and histograms, correlation tables, simple regression, multivariable regression (quantitative and qualitative), scatterplots, trendlines, Goal Seek, SOLVER table and graphing in three dimensions. In addition, students will develop many basic computer literacy abilities, such as copying and pasting and integrating numerical, textual and graphical analyses into a single Word document. But what is most important about the way students learn these tools is that they are all taught in the context of solving business-type problems; this context, we believe, is critical for students learning how to transform these tools from a set of instructions to follow into a method of thinking and analyzing data.

The Structure of the Book

This text is organized into five units, not all of which can be covered in one semester, as mentioned above. The chapters in each unit are all connected through a common "thinking

Unit	Thinking Strategy
Quantifying the World	Students learn the importance of data and how to locate
	data in real world situations.
Analyzing Data Through	Students learn how to use basic charts and graphs to
Spatial Models	deeply understand a problem situation.
Analyzing Data Through	Students learn how to apply proportional reasoning to
Linear Models	understand data with one or more independent vari-
	ables.
Analyzing Data Through	Students learn to build models by linearizing non-
Nonlinear Models	proportional data and learn how to interpret these in
	realistic situations.
Analyzing Data Through	Now that students understand how to build models from
Calculus Models	data, they learn how to use concepts from calculus to
	understand the problem from which the data and the
	model were derived.

Table 1: Units and thinking strategies covered in the text.

strategy". The thinking strategies are described in the table 1. The breakdown of topics in each chapter within the units is described later.

Each chapter is designed to be covered in one week of a typical semester course. Since the homework problems (see below) come at the end of a chapter, the homework schedule should, ideally, consist of one assignment per week. Each chapter's introduction provides a brief overview. It also includes a list of goals and objectives that the student should have after completing the chapter. After the introduction and overview, the main content of each chapter is separated into two major sections, each of which consists of the following:

- **Discussion.** This presents a short overview of the chapter or discusses a short motivational example illustrating the use of the chapter material. The material in this section is conceptual in nature.
- **Definitions and Formulas.** This lists the factual information of the chapter in the form of definitions, formulas, graphs, and methods of computing. It is intended as a reference guide.
- Worked Examples. These offer worked examples of using the formulas and techniques of the chapter. This material is more often procedural in nature, but uses concepts to unpack and apply the material to realistic situations from the business world.
- **Explorations.** These involve small scenarios, often supplemented with data in Excel. They are open-ended and require discussion and scaffolding. These are basically guided-discovery type activities and are ready-made in-class activities, but can also cbe completed by students outside of class in order to enhance their understanding of the chapter material.
- How to Guides. These offer the details for getting Word, Excel and StatPro (an Excel add-in) to handle the computations and graphing needed to complete the exercises.

Homework Problems

Each chapter within a unit is designed to provide the material for a weekly homework assignment at the end of the second section of the chapter. The problems at a chapter's end come in three types: Mechanics and Technique Problems, Application and Reasoning Problems, and Memo Problems (which include Communication and Professionalism skills). Although we consider the memos to be the heart of any course using this book, the number of memos instructors choose to assign on a weekly basis will vary and the two other types of problems work very well to provide a balanced weekly assignment load.

- Mechanics and Technique Problems. These problems involve straightforward calculations by hand or, more often, with the computer, and use the basic definitions, formulas, and computer techniques from the chapter.
- **Application and Reasoning Problems.** These problems require students to analyze data or apply the concepts of the chapter to small decision-making scenarios. Many of these require students to explain their thinking in a few short sentences so that the inferences they have drawn from the data and other information are made explicit.
- Memo Problems. Each chapter concludes with a memo problem from a supervisor at Oracular Consulting. The memos are written in the style of a management memo, often having a rather open-ended feel, and will most often direct the analysis staff (the students) to analyze some data for a client, using the tools of that chapter (and possibly previous chapters). Students are expected to reply to these memos with their own professionally written memos or reports. Most memo problems usually permit more than one "correct" response. We have developed detailed "rubrics" for assessing each memo which are invaluable should the instructor choose to have students revise and resubmit their memos. These can be found in the Instructor's Guide. These rubrics do not contain "answers" per se, but rather statements to be checked off by the instructor that note lapses in analysis, missing pieces, incorrect or misapplied mathematical/computer procedures, or point out structural writing difficulties. These statements are divided into three discrete areas: Mechanics and Technique, Applications and Reasoning, and Communication and Professionalism, and each of these three is divided into two levels of competence, Expected and Impressive (see the appendices for an example). In the Instructor's Guide we describe in detail how we arrive at grades.

Entering Student Profile

As a student entering a course using this book, or as someone using this book on their own to gain new skills, techniques, and concepts about quantitative analysis in the business world, you shold have some skills in the areas of mathematics, the use of technology, and writing.

Mathematics background: Basic algebra skills are essential, but the text does not require well-honed algebraic skills as a pre-requisite. What is most essential is the abstraction that algebra supports in moving from concrete objects to expressions and functions

with parameters and variables. Students should have had a mathematics background up to, but not necessarily including, precalculus.

- **Technology background:** The text does not assume that the students have any knowledge of spreadsheets, though in our experience most have some familiarity with computers and spreadsheets, Excel in particular.
- Writing Background: In our experience, students gain the most from this text when it is taught in a writing-intensive format, using a selection of the chapter memo problems (including revisions). Most first-year college writing course requirements will have prepared students sufficiently to write at the level the memos demand.

Exiting Student Profile

By the end of a course based on this text, we expect students to have developed capabilities in three areas. The first area (mentioned above) is "Mechanics and Techniques," which includes knowledge of basic mathematical notation and symbol manipulation as well as basic technological (especially spreadsheet) skills for structuring problems for solutions. The second area is "Application and Reasoning," which covers the ability to contextualize the mathematical ideas, to extract quantitative information from a context, and to make logical inferences from quantitative analyses. The final area is "Communication and Professionalism," which covers the ability to write coherently about a problem and its proposed solution and to communicate this analysis in a professionally appropriate manner.

Specifically, a student earning an average grade in a course based on this text would have the capabilities in each of the three areas shown in the outline below.

Mechanics and Techniques

- $\circ\,$ Has had experience formulating and interpreting algebraic, graphical and numerical mathematical models
- $\circ\,$ Has used spread sheets to apply various mathematical, statistical, and graphical tools to business situations
- Understands enough about data analytic techniques to effectively communicate with statisticians and other types of expert analysts
- $\circ\,$ Is competent and comfortable with spreadsheets
- $\circ\,$ Has learned to use technology as a tool with which to think

Application and Reasoning

- Understands how to define a problem situation in terms of data
- Understands the basic design of data collection forms and how to employ them
- Has experience in working in open-ended, ambiguous problem situations
- Understands the interpretive power of graphical displays of data
- Understands the power and limitations of mathematical models
- Has experience in interpreting the parameters and coefficients of mathematical models

• Is capable of drawing contextual inferences from statistical and graphical analysis

Communication and Professionalism

- Knows the importance of writing in the workplace
- Can write competent memos and reports as part and parcel of one's job
- Knows how to integrate and arrange statistical and graphical elements in a word processing document to produce a convincing argument
- $\circ\,$ Has learned to consider the reader's response to a memo
- $\circ\,$ Has learned to plan ahead to meet the demands of the course
- Persists when the path is not clear
- Has learned self discipline in accomplishing long and complex tasks

Some Words About Level of Difficulty

Viewed apart from a context of a memo, the mathematics, technology, and writing demands of certain chapters may not seem very difficult when taken separately. But when students analyze a data set using Excel, interpret and draw inferences from mathematical formulations within specific problem contexts and then organize the various charts, computer output, and text into a coherent and readily understood memo, they find the work to be anything but easy. Indeed, instructors of this text invariably comment on how they themselves have been challenged by the problems. The open-ended nature of the problems (e.g. see the Chapter 1 memo) contributes to this challenge, as well as the sheer amount of time it takes to complete the whole process. This is one of the reasons that instructors may not wish to assign a memo problem every week, especially when requiring revisions, which students mightily appreciate and benefit from.

Some Words About Plagiarism and Working Together

We require all memos to be submitted electronically through a course website (Blackboard) in Word. This enables us to issue the following policy that eliminates concerns about plagiarism:

"We encourage you to work together and to seek help when you need it. Our only requirement is that you write your own memo in your own words."

Invariably, two or three students will copy each other's work sometime in the beginning of the semester. Because each writer's voice comes through so strongly even in the memo genre, duplication is easy to detect. Furthermore, technology is an aid in identifying copying. For example, Microsoft Word has a feature called *compare and merge documents* (under tools) that superimposes one document upon another showing all differences in red (every space, every comma, whole chunks of text, etc.) or, more importantly, no differences. Tips on using this tool are available in the *Instructor's Guide*. Once identified, instructors can respond with the following notification: "Computer analysis shows that significant portions of your memo and Mike's memo are identical. While we encourage you to work together, we do require that you do your own write up. Friendly warning." There are no copying problems from this point on. Maybe word gets around the class about the "computer analysis."

Copyright Notice

This edition of *Data Analysis Through Modeling: Thinking and Writing in Context*, including all written material, examples, problems, and associated data files, is the property of Dr. Kris H. Green, copyright 2008.

Chapter Details

Unit I. Quantifying the World. Students learn the importance of data and now to locate						
data in real world s	data in real world situations.					
Chapter	Content	Memo Regarding				
1. Problem Solv-	Framing a problem in terms of	Performing the up-front analysis in re-				
ing	data	sponse to a RFP from Carnivorous Cruise				
		Lines concerning lack of attendance at its				
		entertainment venues (No data file)				
2. Understanding	Collecting and organizing	Creating data collection forms and dis-				
the Role of Data	data to support problem	playing sample test data in spreadsheets				
	solving	for the Carnivorous Cruise Lines RFP				
		(Create your own data file)				
3. Using Models	Building simple models to an-	Analyzing sample data from Carnivorous				
to Interpret Data alyze data using the		Cruise Lines to make changes in the en-				
	standard deviation and pivot	tertainment schedule (Data file)				
	tables					

Unit 2. Analyzing Data Through Spatial Models. Students learn how to use basic charts and graphs to deeply understand a problem situation.

and graphs to deep	Ty understand a problem situation	J11.				
Chapter	Content	Memo Regarding				
4. Box-and-	Using boxplots and associated	Using boxplots to explore the salary struc-				
Whisker Plots	measures to build and analyze	tures of four different companies for two				
	spatial models of data	quite different managers in need of a job				
		(Data file)				
5. Histograms	Using z-scores and histograms	Analyzing customer wait times at a fast				
	for understanding different	food restaurant in response to customer				
	distributions of data	complaints of poor service (Data file)				
6. Interpreting	Estimating statistics from	Analyzing ten different stocks in order to				
Spatial Models	summary data and connect	build financial portfolios for two quite dif-				
	the different spatial models	ferent clients. (Data file)				
	(boxplots and histograms)					
	to build a more complete					
	understanding of a set of data					

Unit 1 \cap 11 **TT**7 11 04 fdat 1.0. +-1 11 + ่าเ + 1 +

Unit 3. Analyzing Data Through Linear Models. Students learn how to apply proportional					
reasoning to understand data with one or more independent variables.					
Chapter	Content	Memo Regarding			
7. Correlation	Picturing and quantifying the	Using and interpreting trendlines to deter-			
	relationship between two vari-	mine how in-city and out-of-city driving			
	ables using correlation and	conditions effect maintenance costs for a			
	trendlines	trucking fleet (Data file)			
8. Simple Regres-	Using simple linear regression	Building and interpreting simple regres-			
sion	to measure the effect of one	sion models regarding the how various			
	variable upon another and to	variables affect ridership on a commuter			
	interpret how well our models	rail system (Data file)			
	fit the data				
9. Multiple	Extending regression model-	Building successive multivariable models			
and Categorical	ing into many dimensions and	using quantitative and qualitative vari-			
Regression	using qualitative variables	ables to analyze how gender might be im-			
		plicated in the salary structure at a com-			
		pany (Data file)			
10. Is the Model	Exploring the reliability of	Developing more realistic models of the			
Any Good?	linear models and introduc-	truck fleet maintenance costs using inter-			
	ing interaction terms into the	action terms and stepwise regression anal-			
	models	ysis (Data file)			

Unit 4. Analyzing Data with Nonlinear Models. Students learn to build models by lin-					
earizing non-proportional data and learn how to interpret these in realistic situations.					
Chapter	Content	Memo Regarding			
11. Graphical	Examining a variety of non-	Analyzing various data sets from a cus-			
Approaches to	linear graphical models with	tomer who wants better models for each			
Nonlinear Data	one independent variable (log-	set than those created by Excel's trend-			
	arithmic, exponential, square,	lines; this is accomplished by shifting and			
	square root and reciprocal)	scaling the basic models and computing			
	and their transformations	the goodness of fit for each (Data file)			
12. Modeling	Building and interpreting	Creating and comparing multivariable			
with Nonlinear	nonlinear regression models,	models (one linear and one multiplicative)			
Data	including general power mod-	to help analyze operating costs at an in-			
	els and multiplicative models	surance company (Data file)			
	in several variables				
13. Nonlinear	Extending the variety of non-	Developing more accurate models of the			
Multivariable	linear multivariable models	commuter rail system data by using			
Models	to include quadratic mod-	quadratic interaction terms (Data file)			
	els developed from interaction				
	terms				

Unit 5. Analyzing Data Using Calculus Models. Now that students understand how to
build models from data, they learn how to use concepts from calculus to understand the
problem from which the data and the model were derived.

Chapter	Content	Memo Regarding
14. Optimization	Using calculus (derivatives) to	Developing and optimizing a mathemati-
and Analysis of	interpret and optimize poly-	cal model to challenge an interpretation of
Models	nomial and power models	a data set (Create your own data file)
15. Deeper Ex-	Applying calculus to the anal-	Applying calculus skills to exponential
ploration of Logs	ysis and optimization of loga-	functions in order to help a wine collec-
and Exponentials	rithmic and exponential mod-	tor plan her wine storage for the future
	els	(Create your own data file)
16. Optimization	Defining constraints and per-	Determining optimal mix of advertising
in Several Vari-	forming constrained optimiza-	budget under uncertain conditions, using
ables	tion using Excel's SOLVER	Solver (Data file)
	routine	
17. Area Under	Evaluating definite integrals	Finding the area between curves to resolve
the Curve	using both the Fundamental	a pricing dispute for a doll at Cool Toys for
	Theorem of Calculus and nu-	Tots (consumers' and producers' surplus).
	merical methods to find the	(Data file)
	area under a curve.	

Dedication and Acknowledgements

First and foremost, this book is dedicated to Dr. Allen Emerson, my co-author and long-time friend, who passed away during the completion of this project. His hard work, tenacious intellect, and willingness try new ideas made this book possible. Our spouses also deserve a great deal of the credit for this work. Cheryl Forbes teaches writing and rhetoric, and her influence on Allen's approach to teaching mathematics was enormous. My wife, Brenda, has had a prfound influence on my approach to teaching overall and on helping me understand the business world enough to bring a new approach to mathematics into it. Both of them put up with our tendencies to lose sight of everything but this project, at times spending upwards of twelve straight hours a day trying to understand student learning in the course we wrote this book to support.

We would also like to thank Anne Geraci for her invaluable assistance. She has provided enormous editorial support in reviewing the materials and helping to prepare this updated edition of the textbook. Any errors, typos, or omissions are entirely due to our work and not her excellent reviewing of the material.

I would also like to thank Carol Freeman, the department of Mathematical and Computing Sciences at St. John Fisher College, and the School of Business at Fisher. They have provided us with opportunities to try new approaches to an old course and have supported our ideas, no matter how strange they seemed. The course we designed, and ultimately, the textbook we wrote, would also not have been possible without the assistance of many adjunct faculty members who helped us with suggestions, revisions and ideas: Mike Rotundo, Rebecca Tiffin, and Mary Ann Cape.

In addition, Ginger James provided us with invaluable assistance in the early years of the course, attending class, tutoring students, and offering suggestions while still an undergraduate at St. John Fisher College. We have also benefited from the able tutoring of several undergraduates, and thank all of them for their assistance in supporting the course.

Contents

Ι	Qı	ıantif	ying the World	1
1	Pro	blem S	Solving By Asking Questions	7
	1.1	Why I	Data?	8
		1.1.1	Definitions and Formulas	10
		1.1.2	Worked Examples	10
		1.1.3	Exploration 1A: Assumptions get in the way	13
		1.1.4	How To Guide	14
	1.2	Defini	ng the Problem	18
		1.2.1	Definitions and Formulas	20
		1.2.2	Worked Examples	21
		1.2.3	Exploration 1B: Beef N' Buns Service	24
		1.2.4	How To Guide	26
	1.3	Home	work	28
		1.3.1	Mechanics and Techniques Problems	28
		1.3.2	Application and Reasoning Problems	28
		1.3.3	Memo Problem	31
2	The	e Role	of Data	33
	2.1	Extra	cting Data from the Problem Situation	34
		2.1.1	Definitions and Formulas	37
		2.1.2	Worked Examples	38
		2.1.3	Exploration 2A: Extracting Data at Beef n' Buns	43
		2.1.4	How To Guide	44
	2.2	Organ	izing data in spreadsheets	47
		2.2.1	Definitions and Formulas	48
		2.2.2	Worked Examples	49
		2.2.3	Exploration 2B: Entering Beef n' Buns Data into Excel	53
		2.2.4	How To Guide	54
	2.3	Home	work	57
		2.3.1	Mechanics and Techniques Problems	57
		2.3.2	Application and Reasoning Problems	58
		2.3.3	Memo Problem	59

99

3	Usiı	Using Models to Interpret Data				
	3.1	The M	lean As A Model	63		
		3.1.1	Definitions and Formulas	65		
		3.1.2	Worked Examples	66		
		3.1.3	Exploration 3A: Wait Times at Beef n' Buns	73		
		3.1.4	How To Guide	75		
	3.2	Catego	orical Data and Means	81		
		3.2.1	Definitions and Formulas	82		
		3.2.2	Worked Examples	82		
		3.2.3	Exploration 3B: Gender Discrimination Analysis with Pivot Tables .	88		
		3.2.4	How To Guide	89		
	3.3	Homev	work	95		
		3.3.1	Mechanics and Techniques Problems	95		
		3.3.2	Application and Reasoning Problems	97		
		3.3.3	Memo Problem	98		

II Analyzing Data Through Spatial Models

4 **Box Plots** 103 4.1What Does "Typical" Mean? 1044.1.11044.1.21054.1.31084.1.41104.2Thinking inside the box 111 4.2.11124.2.21124.2.3Exploration 4B: Relationships Among Data, Statistics, and Boxplots 1174.2.41194.3 1274.3.1Mechanics and Techniques Problems 1274.3.21284.3.3Memo Problem 1311335 Histograms 5.11345.1.11345.1.21355.1.31395.1.41405.21425.2.11435.2.21445.2.3151

		5.2.4	How To Guide
	5.3	Home	work
		5.3.1	Mechanics and Techniques Problems
		5.3.2	Application and Reasoning Problems
		5.3.3	Memo Problem
6	Inte	erpreti	ng Spatial Models 163
	6.1	Estim	ating Stats from Frequency Data 164
		6.1.1	Definitions and Formulas
		6.1.2	Worked Examples
		6.1.3	Exploration 6A: Data Summaries and Sensitivity
		6.1.4	How To Guide
	6.2	Two I	Perspectives are Better than One 176
		6.2.1	Definitions and Formulas
		6.2.2	Worked Examples
		6.2.3	Exploration 6B: Stock Investment Decisions
		6.2.4	How To Guide
	6.3	Home	work
		6.3.1	Mechanics and Techniques Problems
		6.3.2	Application and Reasoning Problems
		6.3.3	Memo Problem

III Analyzing Data Through Linear Models

7	Coo	orelatio	n	199
	7.1	Pictur	ing Two Variable Relationships	200
		7.1.1	Definitions and Formulas	200
		7.1.2	Worked Examples	204
		7.1.3	Exploration 7A: Predicting the Price of a Home	210
		7.1.4	How To Guide	212
	7.2	Fitting	g a Line to Data	216
		7.2.1	Definitions and Formulas	217
		7.2.2	Worked Examples	218
		7.2.3	Exploration 7B: Adding Trendlines	221
		7.2.4	How To Guide	222
	7.3	Homev	work	227
		7.3.1	Mechanics and Techniques Problems	227
		7.3.2	Application and Reasoning Problems	228
		7.3.3	Memo Problem	229
8	Sim	ple Re	gression	231
	8.1	Model	ing with Proportional Reasoning in Two Dimensions	233
		8.1.1	Definitions and Formulas	234
		8.1.2	Worked Examples	234

193

		8.1.3	Exploration 8A: Regression Modeling Practice					238
		8.1.4	How To Guide		•	•		239
	8.2	Using	and Comparing the Usefulness of a Proportional Model					241
		8.2.1	Definitions and Formulas		•			241
		8.2.2	Worked Examples		•			245
		8.2.3	Exploration 8B: How Outliers Influence Regression					249
		8.2.4	How To Guide		•			251
	8.3	Homev	vork		•			253
		8.3.1	Mechanics and Techniques Problems					253
		8.3.2	Application and Reasoning Problems					255
		8.3.3	Memo Problem		•	•		256
9	Mul	tiple F	Regression Models					257
0	9.1	Modeli	ing with Proportional Reasoning in Many Dimensions		_	_		259
	0	9.1.1	Definitions and Formulas					260
		9.1.2	Worked Examples		•	•		263
		9.1.3	Exploration 9A: Production Line Data		•	•		269
		9.1.4	How To Guide		•	•		270
	9.2	Modeli	ing with Qualitative Variables		•	•		273
	0	9.2.1	Definitions and Formulas					274
		9.2.2	Worked Examples					274
		9.2.3	Exploration 9B: Maintenance Cost for Trucks					277
		9.2.4	How To Guide					278
	9.3	Homey	vork					280
		9.3.1	Mechanics and Techniques Problems					280
		9.3.2	Application and Reasoning Problems					281
		9.3.3	Memo Problem					283
10								
10	10 1	ne Moo	del Any Good					285
	10.1	Which	Coefficients are trustworthy?	•••	•	•	• •	287
		10.1.1	Demitions and Formulas	• •	•	•	• •	288
		10.1.2	worked Examples		•	•	• •	288
		10.1.3	Exploration 10A: Building a Trustworthy Model at EnPact	•••	•	•	• •	292
	10.0	10.1.4		• •	•	•	• •	293
	10.2	More (Complexity with Interaction Terms		•	•	• •	295
		10.2.1	Definitions and Formulas	• •	•	•	• •	295
		10.2.2	Worked Examples		•	•		296
		10.2.3	Exploration 10B: Complex Gender Interactions at EnPact		•	•		300
	10.0	10.2.4	How To Guide		•	•	• •	301
	10.3	Homev	Work	• •	•	•		302
		10.3.1	Mechanics and Techniques Problems	• •	•	•		302
		10.3.2	Application and Keasoning Problems		•	•	• •	302
		10.3.3	Memo Problem		•			304

IV .	Analyzing Data with Nonlinear Models	307				
11 No	11 Nonlinear Models Through Graphs 311					
11.1	What if the Data is Not Proportional	312				
	11.1.1 Definitions and Formulas	312				
	11.1.2 Worked Examples	318				
	11.1.3 Exploration 11A: Non-proportional data	322				
	11.1.4 How To Guide	324				
11.2	2 Transformations of Graphs	325				
	11.2.1 Definitions and Formulas	326				
	11.2.2 Worked Examples	328				
	11.2.3 Exploration 11B: Shifting and Scaling the Basic Models	333				
	11.2.4 How To Guide	336				
11.3	B Homework	340				
	11.3.1 Mechanics and Techniques Problems	340				
	11.3.2 Application and Reasoning Problems	343				
	11.3.3 Memo Problem	344				
12 Mo	doling with Nonlinear Data	347				
12 1010	Non-proportional Begression Models	3/8				
14.1	12.1.1 Definitions and Formulas	3/0				
	12.1.1 Deminions and Formulas	350				
	12.1.2 Worked Examples	356				
	12.1.5 Exploration 12.1. Learning and Production at Presario	350				
12 9	Disterpreting a Non-proportional Model	363				
12.2	12.2.1 Definitions and Formulas	364				
	12.2.1 Deminions and Formulas	366				
	12.2.2 Worked Examples	370				
	12.2.5 Exploration 12D. What it means to be finear	371				
19 9	Homowork	373				
12.0	12.3.1 Mochanics and Tochniques Problems	373				
	12.3.1 Mechanics and Techniques Problems	375				
	12.3.2 Application and Reasoning Problems	376				
		570				
13 Mu	ltivariate Nonlinear Models	379				
13.1	Models with Numerical Interaction Terms	380				
	13.1.1 Definitions and Formulas	381				
	13.1.2 Worked Examples	381				
	13.1.3 Exploration 13A: Revenue and Demand Functions	387				
	13.1.4 How To Guide	389				
13.2	2 Interpreting Quadratic Models in Several Variables	391				
	13.2.1 Definitions and Formulas	392				
	13.2.2 Worked Examples	394				
	13.2.3 Exploration 13B: Exploring Quadratic Models	400				
	13.2.4 How To Guide	402				

411

13.3	3 Homework						
	13.3.1	Mechanics and Techniques Problems 4	105				
	13.3.2	Application and Reasoning Problems	07				
	13.3.3	Memo Problem	10				

V Analyzing Data Using Calculus Models

14 Optimization	415
14.1 Calculus with Powers and Polynomials .	
14.1.1 Definitions and Formulas	
14.1.2 Worked Examples	
14.1.3 Exploration 14A: Finding the Deri	vative of a General Power Function 425
14.1.4 How To Guide	
14.2 Extreme Calculus!	
14.2.1 Definitions and Formulas	
14.2.2 Worked Examples	
14.2.3 Exploration 14B: Simple Regression	n Formulas $\ldots \ldots \ldots \ldots \ldots \ldots 435$
14.2.4 How To Guide	
14.3 Homework	
14.3.1 Mechanics and Techniques Problem	ns $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 438$
14.3.2 Application and Reasoning Problem	ns $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 438$
14.3.3 Memo Problem \ldots \ldots	
15 Logarithmic and Exponential Models	443
15.1 Logarithms and their derivatives	
15.1.1 Definitions and Formulas	
15.1.2 Worked Examples	
15.1.3 Exploration 15A: Logs and distribution	tions of data $\ldots \ldots \ldots \ldots \ldots \ldots 450$
15.1.4 How To Guide	
15.2 Compound interest and derivatives of exp	$pomentials \dots \dots$
15.2.1 Definitions and Formulas	
15.2.2 Worked Examples	
15.2.3 Exploration 15B: Loan Amortization	$5n \dots 459$
15.2.4 How To Guide	
15.3 Homework	
15.3.1 Mechanics and Techniques Problem	ns $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 462$
15.3.2 Application and Reasoning Problem	ns $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 463$
15.3.3 Memo Problem	
16 Optimization in Several Variables	465
16.1 Constraints on Optimization	466
16.1.1 Definitions and Formulas	466
16.1.2 Worked Examples	

		16.1.4	How To Guide	. 475	
	16.2	Using	Solver Table	. 477	
		16.2.1	Definitions and Formulas	. 477	
		16.2.2	Worked Examples	. 478	
		16.2.3	Exploration 16B: Sensitivity Analysis	. 485	
		16.2.4	How To Guide	. 487	
	16.3	Homev	vork	. 492	
		16.3.1	Mechanics and Techniques Problems	. 492	
		16.3.2	Application and Reasoning Problems	. 493	
		16.3.3	Memo Problem	. 496	
17	Are	a Unde	er a Curve	497	
	17.1	Calcul	ating the Area under a Curve	. 499	
		17.1.1	Definitions and Formulas	. 501	
		17.1.2	Worked Examples	. 502	
		17.1.3	Exploration 17A: Numerical Integration	. 505	
		17.1.4	How To Guide	. 506	
	17.2	Applic	ations of the Definite Integral	. 508	
		17.2.1	Definitions and Formulas	. 508	
		17.2.2	Worked Examples	. 509	
		17.2.3	Exploration 17B: Consumers' and Producers' Surplus at Market Equi-	-	
			librium	. 515	
		17.2.4	How To Guide	. 516	
	17.3	Homev	vork	. 521	
		17.3.1	Mechanics and Techniques Problems	. 521	
		17.3.2	Application and Reasoning Problems	. 522	
		17.3.3	Memo Problem	. 524	
\mathbf{A}	Exc	el Cur	sor Shapes	525	
В	3 Excel Errors				
С	C Other Features of Excel				
D	D Sample Rubric for Evaluating Memo 7				

CONTENTS