next up previous
Next: Spherical Coordinates Up: Cylindrical Coordinates Previous: The volume element in

An example

The center of mass of an object, W, with a density function $\delta$ has coordinates (xc,yc,zc) which are given by

\begin{displaymath}
x_c = \frac{1}{\mbox{mass}}\int_W x\delta dV, \quad
y_c = \f...
 ...y\delta dV, \quad
z_c = \frac{1}{\mbox{mass}}\int_W z\delta dV.\end{displaymath}

Find the center of mass of a cylindrical wedge with $\delta (x,y,z) = 1$,where the wedge W is given by $0 \le r \le 4, 0 \le \theta \le \pi/4, 0
\le z \le 2$.

1.
Calculate the total mass:

\begin{displaymath}
\mbox{mass} = \int_W \delta(x,y,z) dV \end{displaymath}

\begin{displaymath}
= \int_0^4 \int_0^{\pi/4} \int_0^2 1 r dz d\theta dr \end{displaymath}

\begin{displaymath}
= \int_0^4 \int_0^{\pi/4} r \left. z \right\vert _0^2 d\theta dr \end{displaymath}

\begin{displaymath}
= \int_0^4 \int_0^{\pi/4} 2r d\theta dr \end{displaymath}

\begin{displaymath}
= \int_0^4 (2r) \left. \theta \right\vert _0^{\pi/4} dr \end{displaymath}

\begin{displaymath}
= \int_0^4 \frac{\pi}{2} r dr = 4\pi.\end{displaymath}

2.
Next calculate xc: (Note $x = r\cos \theta$)

\begin{displaymath}
x_c = \frac{1}{4\pi} \int_W x\delta dV = \frac{1}{4\pi}
\int...
 ..._0^4 (r \cos \theta) r dr d\theta dz =
\frac{16\sqrt{2}}{3\pi}.\end{displaymath}

3.
Calculate yc using $y = r\sin \theta$">:

\begin{displaymath}
y_c = \frac{1}{4\pi} \int_W y\delta dV = \frac{1}{4\pi}
\int...
 ...(r\sin \theta) r dr d\theta dz = \frac{16(2 -
\sqrt{2})}{3\pi}.\end{displaymath}

4.
Calculate zc: (note z is the same in both coordinates)

\begin{displaymath}
z_c = \frac{1}{4\pi} \int_W z\delta dV = \frac{1}{4\pi} \int_0^2
\int_0^{\pi/2} \int_0^4 zr dr d\theta dz = 1.\end{displaymath}



Vector Calculus
8/20/1998