next up previous
Next: General Coordinate Changes Up: Spherical Coordinates Previous: The volume element in

An example

Find the volume of a sphere of radius a. The volume is simply the integral of the volume element over the entire region, so the volume is

\begin{displaymath}
\int_W dV = \int_0^{2\pi} \int_0^{\pi} \int_0^a \rho^2 \sin \phi d\rho
d\phi d\theta \end{displaymath}

\begin{displaymath}
= \int_0^{2\pi} \int_0^{\pi} \left. \frac{1}{3}\rho^3 \sin \phi
\right\vert _0^a d\phi d\theta \end{displaymath}

\begin{displaymath}
= \frac{a^3}{3} \int_0^{2\pi} \left. -\cos \phi \right\vert _0^{\pi} d\theta\end{displaymath}

\begin{displaymath}
= \frac{2a^3}{3} \left. \theta \right\vert _0^{2\pi} = \frac{4\pi}{3}a^3.\end{displaymath}



Vector Calculus
8/20/1998