next up previous
Up: Triple (Volume) Integrals Previous: Limits on triple integrals

An example

Set up an iterated integral to compute the volume of a region that is bounded by (a) the xy-plane, (b) the cone $z = \sqrt{x^2 + y^2}$, and (c) the cylinder x2 + y2 = 4, with a density function $\delta(x,y,z) = z$.

1.
First, draw the region. It's the shape you'd get if you removed a conical piece from the center of a cylinder. (illus of region)

2.
Find the limits of integration. Let's integrate in the order: z,y,x. This gives us: $0 \le z \le \sqrt{x^2 + y^2}, -\sqrt{4 - x^2}
\le y \le \sqrt{4-x^2}, -2 \le x \le 2$.

3.
Set up the integral and integrate:

\begin{displaymath}
\int_W \delta dV = \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}
\int_0^{\sqrt{x^2 + y^2}} z dz dy dx \end{displaymath}

\begin{displaymath}
= \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \left[\frac{1}{2} z^2
\right]_0^{\sqrt{x^2+y^2}} dy dx \end{displaymath}

\begin{displaymath}
= \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \frac{1}{2}(x^2 +
y^2) dy dx \end{displaymath}

\begin{displaymath}
= \frac{1}{2} \int_{-2}^2 \left[x^2y +
\frac{1}{3}y^3\right]_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} dx \end{displaymath}

\begin{displaymath}
= \frac{2}{3} \int_{-2}^2 (2 + x^2)\sqrt{4 - x^2} dx = \frac{160}{9}.\end{displaymath}



Vector Calculus
8/20/1998