next up previous
Next: Cylindrical Coordinates Up: Polar Coordinates Previous: The area element in

An example

Compute the mass of the metal plate shown, if its density function is $\delta(x,y) = \sqrt{x^2 + y^2}$. Note that since the plate covers a region shaped like a portion of an annulus, polar coordinates are a good choice for integration.



1.
In polar coordinates, the density function becomes $\delta(x,y) =
\sqrt{x^2 + y^2} \rightarrow f(r,\theta) = r$.
2.
The region of integration is $2 \le r \le 3, \frac{\pi}{4} \le \theta
\le \frac{4\pi}{3}$.

3.
The mass is then

\begin{displaymath}
\int_R f(x,y) dA = \int_{\pi/4}^{4\pi/3} \int_2^3 f(r,\theta) r dr
d\theta \end{displaymath}

\begin{displaymath}
= \int_{\pi/4}^{4\pi/3} \int_2^3 r^2 dr d\theta\end{displaymath}

\begin{displaymath}
= \int_{\pi/4}^{4\pi/3} \left.\frac{1}{3}r^3\right\vert _2^3 d\theta \end{displaymath}

\begin{displaymath}
= \int_{\pi/4}^{4\pi/3} 6 d\theta \end{displaymath}

\begin{displaymath}
= 6 \left. \theta \right\vert _{\pi/4}^{4\pi/3} \end{displaymath}

\begin{displaymath}
= \frac{13 \pi}{2}.\end{displaymath}



Vector Calculus
8/20/1998